Процесс балансировки деталей на балансировочном стенде. Балансировка деталей - слесарно-механосборочные работы

Как производится балансировка колёс (статическая, динамическая)

Шина представляет собой сложное технологическое изделие, состоящее из большого числа разнородных элементов из разных составов резиновой смеси, а также стали, текстиля, синтетических материалов. Поэтому создать равномерное распределение материалов, а следовательно и массы задача сложная и это неизбежно приводит к появлению «тяжелых» мест шины в протекторной части, а также в боковине.

Кроме того, колесо в сборе может быть установлено с нарушением центровки относительно ступицы автомобиля, диск имеет отверстие под вентиль и сам вентиль имеет некоторую массу.

При вращении колеса на элемент массы участвующий в круговом движении действует центробежная сила, величина которой зависит от массы участка, расстояния от оси вращения, а также от линейной скорости вращения. Причем зависимость от скорости квадратичная. Именно эта сила и будет при вращении колеса создавать переменную по направлению результирующую силу, а также переменный по направлению вращающий момент на оси, что ведет к возникновению вибраций колеса, вибраций элементов рулевого управления и подвески. Это воздействие равносильно применению на автомобиле деформированного колеса. В результате, снижается безопасность движения, а также существенно ухудшает комфортность и в конечном счете приводит к разрушению элементов подвески и преждевременному износу шины.

Как же бороться с этим явлением? Ответ прост - необходимо компенсировать неоднородность массы, используя так называемые балансировочные грузики.

Различают статический и динамический дисбаланс.

Статический дисбаланс -- это неравномерное распределение масс по оси вращения. При статическом дисбалансе колесо бьет в вертикальной плоскости. Для устранения этого явления к колесу необходимо приложить компенсирующую силу равную по величине, но противоположную по направлению центробежной силе. Это достигается прикреплением дополнительного грузика в диаметрально противоположной точке нахождения неуравновешенной массы. Такой процесс называется статической балансировкой . Без проведения статической балансировки невозможна и другая процедура: сход-развал -- установка правильного угла наклона колеса, от которого зависит управляемость автомобиля.

Динамический дисбаланс -- это неравномерное распределение масс в плоскостях параллельных направлению движения. При динамическом дисбалансе на колесо действует пара сил противоположно направленных, создающих переменный момент - «расскачивая» колесо из стороны в сторону. Такая балансировка предотвращает раскачивание колеса из стороны в сторону -- основного явления при возникновении динамического дисбаланса. Процедура исправления дефектов производится при быстро вращающемся колесе. Она позволяет более точно установить и устранить все дефекты. После этого выполняют развал схождение.Динамическая балансировка проводится на специальных балансировочных стендах.

В основном при балансировке колеса имеет случай комбинированного дисбаланса , сочетающий статическую и динамическую составляющую.

Сейчас, скорости перемещения возросли, для высокоскоростных автомобилей необходима весьма точная балансировка, сделать которую возможно только на оборудовании высокого класса и квалифицированным персоналом. Кроме того, дополнительную коррекцию неравномерности масс элементов подвески, участвующих во вращении и неточности центровки колеса на ступице возможно осуществить на автомобиле при проведении финишной балансировки.

Балансировочный станок APOLLO

Функциональные особенности:

Высокая производительность и точность балансировки колес за счет применения прогрессивных технологий:

AutoALU, S-Drive, Direct3D

Автоматическое определение параметров диска

Автоматическое определение типа диска (технология AutoALU)

Точное прямое измерение геометрии ALU-дисков (технология Direct3D)

Интеллектуальное управление 3-фазным двигателем - поворот к месту установки груза (технология S-Drive)

Точная установка липких грузов электронной линейкой

SPLIT - установка липких грузов за спицами

Минимизация статического дисбаланса

Настройка предела 0

Счётчик отбалансированных колёс

Синтезатор речи

Защита от повышенного напряжения в сети (технология PowerGuard)

Высокоточный шпиндельный узел, диаметр вала 40 мм.

В случае отсутствия специальных стендов статическую балансировку колеса можно выполнять на ступице переднего колеса автомобиля. Для этого надо приподнять переднюю часть автомобиля домкратом, ослабить затяжку подшипников ступицы переднего колеса, расшплинтовав и отвернув на 90...120° регулировочную гайку. После этого следует устанавливать колесо в различные положения и отпускать. Если при этом колесо не удерживается в установленном положении, а проворачивается в ту или другую сторону и останавливается только в одном положении, значит оно имеет дисбаланс.


Рис. 123.

а -- крепление балансировочного грузика на ободе колеса, б --определение самой легкой части колеса, в -- начальное положение балансировочных грузиков, г -- окончательное положение балансировочных грузиков (при равновесии колеса)

Для балансировки колес необходимо:

снизить давление в шине до 20...30 кПа и снять с обода колеса балансировочные грузики (рис. 123, а);

медленно повернуть колесо против часовой стрелки и отпустить, когда оно остановится; нанести вертикальной меловой чертой метку I (рис. 123,б), определяющую верхнюю точку колеса;

повернуть толчком колесо по часовой стрелке и после его остановки также отметить верхнюю точку меловой вертикальной линией II, разделить кратчайшее расстояние между метками I и III пополам и нанести метку III-- это и будет самое легкое место колеса (рис. 123, б);

установить по обе стороны метки III малые балансировочные грузики (рис. 123, в) массой 30 г, которые своей пружиной подходят под борт покрышки и удерживаются на ободе;

толчком руки повернуть колесо. Если после его остановки грузики займут нижнее положение, их масса для балансировки колеса достаточна; если грузики займут верхнее положение, нужно поставить более тяжелые (40 г) и, вращая колесо, убедиться, что оно останавливается при нижнем положении грузиков;

отодвигая грузики на равные расстояния (А и А) от метки III (рис. 123, г), следует добиться равновесия колеса, когда оно после толчка рукой будет останавливаться в разных положениях (в зависимости от приложенного усилия);

накачать шину до нормального давления и приступить к балансировке следующего колеса. Передние колеса балансируются каждое на своей ступице, а задние -- на одной из ступиц передних колес.

Для уравновешивания любой вращающейся детали необходимо, чтобы ее центр тяжести лежал на оси вращения, а центробежные моменты инерции были равны нулю. Несовпадение центра тяжести детали с осью вращения принято называть статической неурав­новешенностью, а неравенство нулю центробежных моментов инерции - динамической неуравновешенностью.

4.1 Статическая балансировка деталей

Статическая неуравновешенность легко обнаруживается при ус­тановке детали опорными шейками на параллели или ролики. Обычно статической балансировке подвергаются детали, у которых диаметральные размеры намного превышают длину по оси враще­ния (маховики, диски, шкивы, рабочие колеса и т.п.), так как в этом случае динамической составляющей можно пренебречь.

При статической балансировке установкой пробных грузиков определяют места и величину дисбаланса. Неуравновешенность устраняют удалением эквивалентного количества материала с де­тали или установкой корректирующих грузов. Излишний материал у массивных деталей (маховики) удаляют сверлением или фрезеро­ванием, а у тонкостенных (шкивы, диски, роторы) - эксцентриче­ским точением или шлифованием.

После устранения дисбаланса производят повторную (контроль­ную) балансировку. При превышении остаточного дисбаланса до­пустимой по техническим требованиям величины балансировку повторяют

4.2 Динамическая балансировка деталей

Динамической балансировке подвергают работающие при высоких скоростях вращающиеся детали или узлы в сборе, у кото­рых длина по оси вращения превышает диаметральные размеры (например, бильные барабаны зерноуборочных комбайнов или ко­ ленчатые валы двигателей).

Даже в статически уравновешенной детали может быть неравномерное распределение массы по длине относительно оси, что при значительной частоте вращения создает момент центробежных сил на плече L (см. рисунок 1) и, следовательно, дополнительные на­грузки на опоры и вибрацию.

Неуравновешенность выявляют на специальных балансировоч­ных машинах при вращении детали на рабочих скоростях и устра­няют, как и при статической балансировке, только в двух или более плоскостях коррекции, выбираемых в зависимости от конструкции детали.

Динамическая балансировка исключает необходимость выпол­нения балансировки статической.

Для выполнения динамической балансировки необходимы ус­тановки, обеспечивающие вращение детали, контроль действую­щих при этом на опоры центробежных сил неуравновешенных масс или моментов этих сил, а также выявление плоскости расположе­ния неуравновешенных масс.

Рисунок 1 Приведение действующих на ротор ротор, к двум плоскостям коррекции сил

Этим обстоятельством как раз и пользуются при динамиче­ской балансировке деталей. Для балансировки выбирают на детали две плоскости, перпендикулярные к оси вращения и удобные для установки уравновешивающих грузов или удаления части материа­ла детали - так называемые плоскости коррекции. Станок на­страивают так, чтобы можно было определить место и величину грузов, которые следует добавить (или удалить) в каждой из плос­костей для полного уравновешивания детали.

Динамическую неуравновешенность выявляют на баланси­ровочных машинах. В ремонтном производстве наибольшее рас­пространение получили электрические балансировочные машины с упругими опорами (см. рисунок 2).

Неуравновешенные массы детали вызывают механические колебания подвижных опор (1). С помощью датчиков (2) эти меха­нические колебания преобразуются в электрические. Причем на­пряжение электрического тока в датчике прямо пропорционально величине механического колебания опоры, т.е. неуравновешенно­сти. В измерительном устройстве (3) ток усиливается и прочитыва­ется на миллиамперметре (4) в виде показаний дисбаланса.

Рисунок 2 Схема машины для динамической балансировки коленчатых валов:

1 - подвижные опоры (люльки); 2 - датчик колебаний; 3 ­блок усиления и измерения; 4 - миллиамперметр; 5 - лампа стробо­скопа; 6 - электродвигатель; 7 - лимб стробоскопа; 8 - лимб отсчета угла поворота вала.

Угловое расположение неуравновешенных масс определяет­ся стробоскопическим устройством. Стробоскопическая лампа управляется напряжением датчика колебаний, причем каждый раз, когда вектор неуравновешенных масс проходит горизонтальную плоскость с лицевой стороны станка, лампа (5) вспыхивает и от­свечивает определенную цифру на лимбе стробоскопа (8). Из-за стробоскопического эффекта цифры на лимбе кажутся неподвиж­ными.

Статической балансировкой называют совмещение центра тяжести детали с её геометрической осью вращения. Это достигают снятием металла с тяжёлой части детали, или добавлением его путём наплавки на её лёгкую часть.
Статической балансировке подвергают маховики, крылатки насосов, зубчатые колёса и шестерни зубчатых передач дизельных установок и т.д.
Вращение деталей с неуравновешенной массой приводит к появлению центробежной силы или пары сил, которые и вызывают вибрацию механизма при его работе. Центробежная сила возникает при условии, что центр тяжести детали не совпадает с её осью вращения.
Схема действия центробежной силы при смещении центра тяжести:

Неуравновешенная центробежная сила создаёт на подшипниках дополнительные нагрузки, величина которых может быть определена по формулам:


где Р1,Р2 — дополнительные нагрузки на подшипниках;
а, в — расстояние от плоскости действия силы С соответственно до левого и правого подшипников, мм;
l — расстояние между осями подшипников, мм.
Величину центробежной силы можно определить через массу детали и величину смещения центра тяжести детали относительно оси её вращения по формуле:


где G — масса детали, кг;
q — ускорение силы тяжести (9,81 м/с2);
w — угловая скорость (w = п на n / 30, где n — частота вращения, мин - 1);
r — расстояние от центра тяжести до оси вращения детали, м.
Например, центр тяжести «0» вращающегося диска массой 30 кг с частотой вращения 3000 мин - 1 смещён от центра оси на величину r = 1 мм. Тогда неуравновешенную центробежную силу получаем:

то есть нагрузка на ось в 10 раз превышает массу самой детали. Из этого следует, что даже незначительное смещение центра тяжести может вызвать большие дополнительные нагрузки на подшипники.
Статическую балансировку производят на специальных стендах. Основными деталями стенда являются ножи (призмы), валики или подшипники качения, на которых устанавливают балансируемую деталь на оправке. Ножи, валики или подшипники размещают в одной горизонтальной плоскости.
Статическую балансировку деталей, работающих при частоте вращения до 1000 мин - 1, производят в один этап, а деталей, работающих при большей частоте вращения, — в два этапа.
На первом этапе деталь уравновешивают до безразличного её состояния, то есть такого состояния, при котором деталь останавливается в любом положении. Это достигают путём определения положения тяжелой точки, а затем с противоположной стороны подбирают и крепят уравновешивающий груз. В качестве уравновешивающего груза используют кусок пластилина, замазки, мастики и т.д.
После уравновешивания детали на её лёгкой стороне взамен временного груза крепят постоянный груз, или с тяжёлой стороны снимают соответствующее количество металла, схема установки временного и постоянного грузов представлена на рисунке:
Схема установки временного (Р1) и постоянного (Р2) грузов:


Б — тяжёлая точка.
Иногда место установки уравновешивающего временного груза меняют, что сопровождается изменением радиуса его установки и, как следствие, изменением его массы. Величину массы постоянного уравновешивающего груза определяют из уравновешивания моментов:


где Р1 — масса временного груза;
Р2 — масса постоянного груза;
R, r — радиусы установки соответственно временного и постоянного грузов.
Для деталей с частотой вращения до 1000 мин - 1 балансировку на этом заканчивают.
Второй этап балансировки заключается в устранении остаточной неуравновешенности (дисбаланса), оставшейся за счёт инерции детали и наличия трения между оправкой и опорами. Для этого поверхность торца детали делят на шесть-восемь равных частей, нумеруя их.
Диаграмма статической балансировки детали:


а — разметка окружности торца детали и места установки грузов; б — развёртка окружности и кривая балансировки.
Затем деталь с временным грузом устанавливают так, чтобы точка 1 оказалась в горизонтальной плоскости. В этой точке крепят груз, увеличивая его массу до тех пор, пока деталь не выйдет из состояния равновесия (покоя) и не начнёт медленно вращаться. Груз снимают и взвешивают на весах.
В такой же последовательности выполняют работу и для остальных точек детали. Полученные значения массы грузов заносят в таблицу:
Значения массы грузов в точках их установки на детали (r ):


По данным таблицы строят кривую, которая при точном выполнении балансировки должна иметь форму синусоиды. На этой кривой находят точки максимума (А макс) и минимума (А мин).
Точке максимума кривой соответствует легкое место детали, а точке минимума — тяжёлое место детали.
Массу уравновешивающего груза (дисбаланса) определяют по формуле:


Статическая балансировка считается удовлетворительной, если:


где К — масса дисбаланса детали, г;
R — радиус установки временного груза, мм;
G — масса балансируемой детали, кг;
l ст — предельно допустимое смещение центра тяжести детали от оси её вращения, мкм.
Предельно допустимое смещение центра тяжести детали находят по диаграмме предельно допустимых смещений центра тяжести у деталей при статической балансировке.
Диаграмма предельно допустимых смещений центра тяжести деталей при статической балансировке:


1 — для колёс зубчатых редукторов, дисков гидромуфт, гребных винтов с турбоприводом; 2 — гребные винты дизельных установок, маховики, крылатки центробежных насосов и вентиляторов.
Если соблюдается условие уравнения, то процесс балансировки на этом заканчивается и груз дисбаланса на деталь не устанавливают. Если условие уравнения не соблюдается, то полученную массу грузика «К» устанавливают в точке А макс (радиус 2) или снимают в точке А мин (радиус 6).
Качество балансировки деталей проверяют при работе дизеля по его вибрации.

Каусов М.А - сотрудник редакции

Надежная и исправная работа вращающихся механизмов зависит от большого числа факторов, таких как: соосность валов агрегата; состояние подшипников, их смазка, посадка на валу и в корпусе; износ корпусов и уплотнений; зазоры в проточной части; выработка сальниковых втулок; радиальный бой и прогиб вала; дисбаланс рабочего колеса и ротора; подвеска трубопроводов; исправность обратных клапанов; состояние рам, фундаментов, анкерных болтов и многое другое. Очень часто упущенный небольшой дефект, как снежный ком тянет за собой другие, а в результате выход оборудования из строя. Только учитывая все факторы, точно своевременно диагностируя их, и соблюдая требования ТУ на ремонт вращающихся механизмов, можно добиться безотказной работы агрегатов, обеспечить заданные рабочие параметры, увеличить межремонтный ресурс, снизить уровень вибрации и шума. Планируется посвятить теме ремонта вращающихся механизмов ряд статей, в которых будут рассмотрены вопросы диагностики, технологии ремонта, модернизации конструкции, требованиям к отремонтированному оборудованию и рационализаторским предложениям по повышению качества и снижению трудоемкости ремонта.

В ремонте насосов, дымососов и вентиляторов трудно переоценить значение точной балансировки механизма. Как удивительно и радостно видеть некогда грохочущую и трясущуюся машину, которую усмирили и успокоили несколько граммов противовеса, заботливо установленные в «нужное место» умелыми руками и светлой головой. Невольно задумываешься о том, что значат граммы металла на радиусе колеса вентилятора и тысячах оборотов в минуту.

Так в чем же причина такой резкой перемены в поведении агрегата?

Попробуем представить себе, что вся масса ротора вместе с рабочим колесом сосредоточена в одной точке - центре масс (центре тяжести), но из-за неточности изготовления и неравномерности плотности материала (особенно для чугунных отливок) эта точка смещена на некоторое расстояние от оси вращения (Рисунок №1). При работе агрегата возникают силы инерции - F, действующие на смещенный центр масс, пропорциональные массе ротора, смещению и квадрату угловой скорости. Они-то и создают переменные нагрузки на опоры R, прогиб ротора и вибрации, приводящие к преждевременному выходу агрегата из строя. Величина равная произведению расстояния от оси до центра масс на массу самого ротора - называется статическим дисбалансом и имеет размерность x см].

Статическая балансировка

Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.

Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.

Чтобы сбалансировать колесо нужно решить три задачи:

1) найти то самое «нужное место» - направление, на ко тором расположен центр тяжести;

2) определить, сколько «заветных грамм» противовеса необходимо и на каком радиусе их расположить;

3) уравновесить дисбаланс корректировкой массы рабочего колеса.

Приспособления для статической балансировки

Найти место дисбаланса помогают приспособления для статической балансировки. Их возможно изготовить самостоятельно они просты и недороги. Рассмотрим некоторые конструкции.

Простейшим устройством для статической балансировки являются ножи или призмы (Рисунок №2), установленные строго горизонтально и параллельно. Отклонение от горизонта в плоскостях параллельной и перпендикулярной оси колеса, не должно превышать 0,1 мм на 1 м. Средством проверки может служить уровень «Геологоразведка 0,01» или уровень соответствующей точности. Колесо одевается на оправку, имеющую опорные шлифованные шейки (в качестве оправки, можно использовать вал, заранее проверив его точность). Параметры призм из условий прочности и жесткости для колеса массой 100 кг и диаметром шейки оправки d = 80 мм составят: рабочая длинна L = p X d = 250 мм; ширина около 5 мм; высота 50 - 70 мм.

Шейки оправки и рабочие поверхности призм должны быть шлифованными для снижения трения. Призмы необходимо зафиксировать на жестком основании.

Если дать колесу возможность свободно перекатываться по ножам, то после остановки центр масс колеса займет положение не совпадающее с нижней точкой, из-за трения качения. При вращении колеса в противоположную сторону, после остановки оно займет другое положение. Среднее положение нижней точки соответствует истинному положению центра масс устройства (Рисунок №3) для статической балансировки. Они не требуют точной горизонтальной установки как ножи и на диски (ролики) можно устанавливать ротора с разными диаметрами цапф. Точность определения центра масс меньше из-за дополнительного трения в подшипниках качения роликов.

Применяются устройства для статической балансировки роторов в собственных подшипниках. Для снижения трения в них, которое определяет точность балансировки, применяют вибрацию основания или вращение наружных колец опорных подшипников в разные стороны.

Балансировочные весы.

Самым точным и в то же время сложным устройством статической балансировки являются балансиро вочные весы (Рисунок №4). Конструкция весов для рабочих колес приведена на рисунке. Колесо устанавливают на оправку по оси шарнира, который может качаться в одной плоскости. При повороте колеса вокруг оси, в различных положениях его уравновешивают противовесом, по величине которого находят место и дисбаланс колеса.

Методы балансировки

Величину дисбаланса или количество граммов корректирующей массы определяют следующими способами:

-методом подбора, когда установкой противовеса в точке противоположной центру масс добиваются равновесия колеса в любых положениях;

-методом пробной массы - Мп, которую устанавливают под прямым углом к «тяжелой точке», при этом ротор совершит поворот на угол j. Корректирующую массу вычисляют по формуле Мк = Мп ctg j или определят по номограмме (Рисунок №5): через точку, соответствующую пробной массе на шкале Мп, и точку, соответствующую углу отклонения от вертикали j, проводят прямую, пересечение которой с осью Мк дает величину корректирующей массы.

В качестве пробной массы можно использовать магниты или пластилин.

Метод кругового обхода

Самым подробным и наиболее точным, но и наиболее трудоемким является метод кругового обхода. Он применим и для тяжелых колес, где большое трение мешает точно определить место дисбаланса. Поверхность ротора делят на двенадцать или более равных частей и последовательно в каждой точке подбирают пробную массу Мп, которая приводит ротор в движение. По полученным данным строят диаграмму (Рисунок №6) зависимости Мп от положения ротора. Максимум кривой соответствует «легкому» месту, куда необходимо установить корректирующую массу Мк = (Мп max + Мп min)/2.

Способы устранения дисбаланса

После определения места и величины дисбаланса его необходимо устранить. Для вентиляторов и дымососов дисбаланс компенсируется противовесом, который устанавливается на внешней стороне диска рабочего колеса. Чаще всего для крепления груза используют электросварку. Этот же эффект достигается снятием металла в «тяжелом» месте на рабочих колесах насосов (по требованиям ТУ допускается снятие металла на глубину не более 1 мм в секторе не более 1800). При этом корректировку дисбаланса стараются проводить на максимальном радиусе, т. к. с увеличением расстояния от оси, возрастает влияние массы корректируемого металла на равновесие колеса.

Остаточный дисбаланс

После балансировки рабочего колеса из-за погрешностей измерений и неточности устройств сохраняется смещение центра масс, которое называется остаточным статическим дисбалансом. Для рабочих колес вращающихся механизмов нормативная документация задает допустимый остаточный дисбаланс. Например, для колеса сетевого насоса 1Д1250 - 125 задается остаточный дисбаланс 175 г х см (ТУ 34 - 38 - 20289 - 85) .

Сравнение методов балансировки на различных устройствах

Критерием сравнения точности балансировки может служить удельный остаточный дисбаланс. Он равен отношению остаточного дисбаланса к массе ротора (колеса) и измеряется в [мкм]. Удельные остаточные дисбалансы для различных методов статической и динамической балансировки сведены в таблицу №1.

Из всех устройств статической балансировки, весы дают самый точный результат, однако, это устройство самое сложное. Роликовое устройство, хотя и сложнее параллельных призм в изготовлении, но проще в эксплуатации и дает результат не многим хуже.

Основным недостатком статической балансировки является необходимость получения низкого коэффициента трения при больших нагрузках от веса рабочих колес. Повышение точности и эффективности балансировки насосов, дымососов и вентиляторов можно достичь методами динамической балансировки роторов на
станках и в собственных подшипниках.

Применение статической балансировки

Статическая балансировка рабочих колес эффективное средство снижения вибрации, нагрузки на подшипники и повышения долговечности машины. Но она не панацея от всех бед. В насосах типа «К» можно ограничиться статической балансировкой, а для роторов моноблочных насосов «КМ» требуется динамическая, т. к. там возникает взаимное влияние небалансов колеса и ротора электродвигателя. Необходима динамическая балансировка и для роторов электродвигателей, где масса распределена по длине ротора. Для роторов с двумя и более колесами, имеющих массивную соединительную полумуфту (например СЭ 1250 - 140), колеса и муфта балансируются отдельно, а затем ротор в сборе балансируют динамически. В отдельных случаях длят обеспечения нормальной работы механизма необходима динамическая балансировка всего агрегата в собственных подшипниках.

Точная статическая балансировка - это необходимая , но иногда не достаточная основа надежной и долговечной работы агрегата.

Такие крупные детали, как шкивы, маховики, роторы и воз­духодувы, вращающиеся с большими скоростями, должны быть хорошо уравновешены во избежание биения, вибрации, наруше­ния центровки и повышения нагрузки на опорные детали. Разли­чают три вида неуравновешенности:

Неуравновешенность, вызываемая смещением центра тяжести детали относительно оси вращения, при которой сила инер­ции приводится к одной равнодействующей центробежной силе. Такая неуравновешенность характерна для деталей с не­значительной осевой длиной по сравнению с диаметром (ма­ховики, шкивы, зубчатые колеса) и устраняется статической (одноплоскостной) балансировкой;

Неуравновешенность, при которой силы инерции приводятся к равнодействующей паре сил, создающей центробежный момент инерции относительно оси вращения;

Неуравновешенность, при которой силы инерции приводятся

К равнодействующей силе и к паре сил.

Второй и третий виды неуравновешенности характерны для деталей, имеющих значительную длину по сравнению с диамет­ром (роторы) и устраняются динамической (двухплоскостной) балансировкой.

Считают, что допустимое смещение центра тяжести равно

Частному от деления 2-10 на квадрат частоты вращения детали.

Статическая или силовая балансировка основана на исполь­зовании статического неуравновешенного момента, под действием которого деталь поворачивается до тех пор, пока наиболее тяжелая часть окажется вертикально под осью вращения детали и появится возможность осуществить балансировку путем установки допол­нительных грузов на диаметрально противоположной стороне де­тали или путем облегчения наиболее тяжелой части детали. Стати­ческую балансировку выполняют путем установки детали на приз­мах, вращающихся опорах, весах или непосредственно на месте установки детали. Иногда деталь предварительно закрепляют на оправке. Балансировочные призмы, изготовленные с большой точ­ностью из закаленной стали, устанавливают на балансировочном устройстве параллельно и горизонтально с точностью до 0,02 мм/м. Процесс балансировки состоит из двух операций.

Первая операция заключается в устранении основного дис­баланса. Для этого окружность торца балансируемой детали де­лят на 6-8 частей и, поворачивая деталь на призмах на 45°, каж­дый раз находят и отмечают нижнюю точку, т. е. наиболее тяже­лую часть. Если при этом нижнее положение будет занимать одна и та же точка, то через нее проводят диаметр и, подбирая груз на его противоположном конце, компенсируют дисбаланс, т. е. дости­гают безразличного равновесия. Грузом может служить замазка или небольшие кусочки металла, приклеиваемые к детали. Затем временные грузы заменяют постоянными, прочно закрепляя их к детали в нужном месте, и контролируют правильность баланси­ровки. Иногда, наоборот, утяжеленные части детали облегчают, высверливая небольшие углубления.

Вторая операция заключается в определении остаточного дисбаланса вследствие наличия сил трения между призмами и оправкой или устранении так называемой невыявленной неурав­новешенности. При этом на каждом из размеченных делений по­очередно в горизонтальной плоскости фиксируют грузики в точ­ках, одинаково удаленных от центра, пока деталь не начнет вра­щаться на призмах. Массы пробных грузиков заносят в таблицу, и на ее основании строят кривую, фиксирующую крайние точки, ко­торые соответствуют наибольшей разности грузов (рис. 7.16). Низшая точка кривой соответствует наиболее тяжелому месту детали. Окончательно уравновешивающий груз необходимо ус­тановить в диаметрально противоположном месте. Величину гру­за определяют по формуле

Q (^макс -

Где Q - величина груза; Амакс и Аиин - соответственно максимальная и минимальная масса грузов, расположенных на одном диаметре.

Дополнительный груз закрепляют на детали в месте, соот­ветствующем высшей точке кривой, и делают окончательную проверку, определяя остаточную неуравновешенность. Допусти­мая величина статической неуравновешенности зависит от кон­струкции машины и режима ее работы. Точность статической балансировки на призмах позволяет обнаружить остаточное сме­щение центра тяжести детали от оси вращения на 0,03-0,05 мм, а на балансировочных весах до 5 мкм.

Динамическую бачансировку выполняют на машиностроитель­ных заводах, так как в условиях монтажа и ремонта в мастерских предприятий молочной промышленности ее трудно осуществить.

Посуда вошла в нашу жизнь и обыденность ещё с древних времен, но её покупка и продажа является до сих пор актуальна. За счет высокого качества керамики и длительности эксплуатации, посуда …

Автоматизированная система инструментального обес­печения - система взаимосвязанных элементов, включающая участки подготовки инструмента, его транспортирования, накоп­ления, устройства смены и контроля качества инструмента, обес­печивающие подготовку, хранение, автоматическую установку и замену инструмента. АСИО …

Взаимоотношения при выполнении ремонтно-обслуживаю - щих работ зависят от структуры производственно-технических связей между владельцами техники и предприятиями техниче­ского сервиса, от взаимоотношений последних с заводами-изго­товителями. Развитие коммерческого технического сервиса должна быть …