Понятие материи. Виды материи: вещество, физическое поле, физический вакуум

Эфир

Понятие об эфире исходит из глубокой древности – в древнеарийскую эпоху оно относилось к особому состоянию материи, называемому «акаша» (пятый элемент материальной природы). Вот как понятие «акаша» освещено в трактате С. Вивекананды «Раджа-йога»: «Это всюду находящееся и все проникающее нечто. Все, что имеет форму, все, что представляет собою результат соединений, все развилось из этой Акашы. Акаша это то, что стало воздухом, жидкостями, твердыми телами. Она сама не может быть замечаема, так как настолько тонка, что находится вне всех обыкновенных восприятий и может быть видима только тогда, когда станет грубою, примет форму. При начале творения существует только эта Акаша; при конце цикла твердые тела, жидкости и газы, все разложатся опять в Акашу».

Две с половиной тысячи лет назад древние греки подхватили и развили это понятие под именем αιυηρ (эфир, небо). В 1618 г. французский философ, физик и математик Рене Декарт предложил рассмотреть эфир в качестве материального переносчика света. По его представлениям, свет является сжатием, распространяющимся в идеально упругой среде (эфире), которая заполняет все пространство. С тех пор идея эфира прочно вошла в научный оборот, особенно в трудах Ньтона, Френеля, Максвелла, Лоренца . Эфирная концепция достигла кульминации в XIX веке, когда Максвелл, опираясь на созданную им модель эфира, получил фундаментальные уравнения электродинамики.

К началу XX в. сложились два взгляда на эфир: либо он увлекается движением тел, либо не увлекается (неподвижен). Из концепции неувлекаемого эфира следовало неравноправие инерциальных систем и существование привилегированной (связанной с эфиром) системы отсчета называемой абсолютной. Эксперименты, призванные выявить такую систему отсчета и скорость относительно нее, были выполнены Майкельсоном (1881 г.), Морли и их последователями, и продолжались на протяжении всего столетия . Эксперименты дали нулевой результат: движение Земли относительно эфира не выявлено. Это интерпретировалось, как доказательство отсутствия эфира, несмотря на попытки Лоренца объяснить нулевой результат сокращением размеров тел вдоль движения . Ожидаемый результат в этих опытах рассчитывался по законам классической механики, поскольку научная общественность не имела другого аппарата (иной механики) для оценки опыта, на момент его проведения. Однако следует подчеркнуть некорректность применения этих законов для случая распространения света в эфире. Главная особенность классической механики – это требование мгновенности распространения взаимодействий, т.е. законы этой механики справедливы только при условии малости скоростей движения по сравнению со скоростью света. Следовательно, все скорости движений, входящие в Ньютоновскую формулу сложения скоростей (v + c ), также должны удовлетворять этому условию. При расчете опыта Майкельсона – Морли это условие оказалось выполненным только для скорости Земли (v ), второе слагаемое – скорость света (c ) – этому условию явно не удовлетворяет. Таким образом, применение механики Галилея – Ньютона незаконно, поскольку нарушает границы её применимости. Для расчета опыта нужна иная механика , отличная от классической и релятивисткой. Основу этой новой механики составляют существование абсолютной системы отсчета, связанной с эфиром, и вытекающее отсюда неравноправие инерциальных систем. В итоге некорректной интерпретации опытов Майкельсона – Морли , завершившейся построением специальной теории относительности (СТО), был теоретически оформлен отказ от концепции эфира, а вместо эфира, с развитием квантовой теории поля, появился термин «физический вакуум».

Физический вакуум

Вакуум (по-латински vacuum) – пустота, т.е. пространство без материи и энергии. Физический вакуум – пространство, не содержащее реальных частиц и энергии, поддающейся непосредственному измерению. Согласно современным физическим представлениям, это наиболее низкое энергетическое состояние любых квантованных полей, характеризующееся отсутствием реальных частиц. Возможность виртуальных процессов в физическом вакууме приводит к ряду эффектов взаимодействия реальных частиц с вакуумом, регистрируемых экспериментально. Физический вакуум представляет собой множество всевозможных виртуальных частиц и античастиц, которые в отсутствии внешних полей не могут превратиться в реальные. По современным представлениям в вакууме непрерывно образуются и исчезают пары частиц–античастиц: электрон–позитрон, нуклон–антинуклон... Вакуум наполнен такими «не вполне родившимися», появляющимися и исчезающими частицами. Они не поддаются регистрации и называются виртуальными. Однако при определенных обстоятельствах виртуальные частицы становятся реальными. Так, например, столкновения частиц высоких энергий или сильные поля рождают из вакуума снопы различных частиц и античастиц. Т.е. вакуум может быть представлен, как особый, виртуальный тип среды. Виртуальность среды проявляется, в частности, в невозможности выявить факт движения относительно неё никакими экспериментальными методами, что равносильно проявлению принципа относительности. Концепция равноправия инерциальных систем, называемая принципом относительности, является фундаментом теорий породивших понятие о физическом вакууме. Т.е. представления о физическом вакууме были логически получены из принципа относительности. Согласно с данными представлениями, свет не нуждается в материальной среде-носителе, а совокупность фотонов образует свободное электромагнитное поле. Самое низкое энергетическое состояние этого поля называют «вакуумом электромагнитного поля» .

Причины, побуждающие вернуться к концепции эфира

На основе принципа относительности была создана специальная теория относительности. Эта теория объяснила накопившиеся к тому времени экспериментальные данные и стала фундаментом современной физики высоких энергий. Ее с успехом применяют при проектировании ускорителей элементарных частиц и в экспериментах с релятивистскими частицами. Тем не менее, есть серьезные основания для того, чтобы отказаться от принципа относительности, лежащего в основе СТО:

  1. Специальная теория относительности содержит внутреннее противоречие, известное как парадокс двух близнецов. Предпринимались попытки разрешить этот парадокс привлечением общей теории относительности (ОТО), но это имело успех лишь для малых скоростей движения . В общем случае релятивистских скоростей парадокс остается неустранимым. Наиболее отчетливо нарушения причинно следственных связей между событиями выявляются в «парадоксе трех близнецов» (рассмотренном в ), являющимся развитием мысленного эксперимента с близнецами.
  2. Существуют современные эксперименты, устанавливающие зависимость скорости света от направления распространения волны. Серия таких экспериментов была выполнена Стефаном Мариновым, в опытах было выявлено направление распространения световой волны, в котором имеет место превышение скорости света с на величину 360 ± 40 км/с. Результаты экспериментов Маринова вступают в противоречие с постулатом СТО об инвариантности скорости света.

Изложенные причины явились основанием для отказа от принципа относительности, что естественным образом приводит к идее возрождения концепции эфира, для которой характерны неравноправие инерциальных систем, с одной стороны, и зависимость скорости света от направления распространения волны с другой. Концепция эфира заставляет по иному взглянуть на взаимодействие реальных частиц с виртуальными (представляемое в рамках концепции физического вакуума). Указанное взаимодействие есть не что иное, как взаимодействие реальных частиц с реальным эфиром, исключающим необходимость введения искусственных посредников, каковыми являются виртуальные частицы.

Теоретическое обоснование концепции эфира

Не касаясь конкретных моделей эфира, выделим два его свойства, необходимые для дальнейшего изложения: свойство среды-носителя взаимодействий и его неувлекаемость движущимися телами (неподвижность). Таким образом, электромагнитная волна представляет собой распространение возбуждения неподвижной среды-эфира.

Альтернативная интерпретация опытов Майкельсона – Морли

Опыт Майкельсона – Морли в момент становления СТО был проинтерпретирован в соответствии с принципом относительности, а именно: скорость света в любой системе координат имеет одинаковую величину «с » и не зависит от направления распространения волны (т.е. изотропна). Однако из опытов Майкельсона – Морли такой результат не вытекает. В экспериментах Майкельсона – Морли, установлен факт изотропии времени двустороннего распространения света (t + + t – = const) здесь t + ; t – – интервалы времени одностороннего распространения света на отрезке оптической линии длиной L в прямом (от начала отрезка к концу – t +) и обратном (от конца к началу – t –) направлениях. Сторонники принципа относительности, не имея возможности измерить указанные времена раздельно (ввиду отсутствия соответствующей техники и технологии) и опираясь на принципиально неверный расчет опыта, трактовали его результат, как равенство времен t + и t – , отбросив очевидную альтернативную версию: «t + не равно t – , при условии t + + t – = const ». Если ввести величину, называемую скоростью двустороннего распространения света и определяемую как: c = 2L /(t + + t ) , то для этой величины (а вовсе не для скорости одностороннего распространения света) из опытов Майкельсона – Морли действительно вытекает инвариантность и изотропность (см. подробнее в ).

Такое, казалось бы, незначительное отличие в интерпретации опыта Майкельсона – Морли приводит к диаметрально противоположному результату: к отказу от принципа относительности и к возрождению концепции эфира.

Теория светоносного эфира (СЭТ)

Альтернативная, корректная интерпретация опытов Майкельсона – Морли позволила построить теорию на следующих постулатах:

  1. О существовании среды распространения взаимодействий (эфира, не увлекаемого движущимися телами) и связанной с ней абсолютной системы отсчета; свет в указанной среде распространяется прямолинейно и изотропно со скоростью с = 299792458 ± 1,2 м/с.
  2. Об инвариантности скорости двустороннего распространения света в инерциальных системах отсчета. Из постулатов вытекают преобразования координат и времени для двух систем отсчета (OX 1 Y 1 Z 1) и (OX 2 Y 2 Z 2), движущихся относительно абсолютной системы с разными скоростями v 1 и v 2 (называемыми в дальнейшем абсолютными) (см. ):
x 2 = (x 1 – u 01 t 1)/γ; y 2 = y 1 ; z 2 = z 1 ;
t 2 = γ t 1 ;
u 02 = –u 01 /γ 2 ;
(1)

Здесь u 01 – относительная скорость системы (OX 2 Y 2 Z 2), измеренная в (OX 1 Y 1 Z 1), а u 02 – скорость системы (OX 1 Y 1 Z 1 ) относительно (OX 2 Y 2 Z 2 ). Следует отметить, что u 01 не равно u 02 , в отличие от СТО, в которой относительные скорости систем отсчета имеют одинаковую величину. Из формулы t 2 = γt 1 вытекает зависимость скорости течения времени (темпа хода часов) от абсолютной скорости движения инерциальных систем. Системы, имеющие разные абсолютные скорости v 1 и v 2 , не равноправны: темп хода часов выше в системе отсчета, имеющей меньшую абсолютную скорость.

Важным следствием приведенных преобразований является абсолютный характер понятия одновременности событий. События одновременные в одной инерциальной системе отсчета (dt 1 = 0) будут одновременны в любой другой системе (dt 2 = 0), что принципиально отличается от СТО. Соответственно сокращение размеров тел, вытекающее из преобразований (1), является отражением сближения атомов и молекул, составляющих тела вдоль направления движения. В СТО сокращение размеров тел имеет совершенно иной характер, а именно, является следствием неодновременности событий (события, произошедшие одновременно в одной системе отсчета, в другой инерциальной системе отсчета одновременными не являются).

Закон преобразования энергии (E ) и импульса (p ) при переходе из одной инерциальной системы отсчета в другую, согласно СЭТ, имеет вид:

p x 2 = γp x 1 , p y 2 = p y 1 , p z 2 = p z 1 , E 2 = (E 1 – u 01 p x 1)/γ.

Связь энергии и импульса в инерциальной системе отсчета, имеющей абсолютную скорость v 0 , определяется соотношением:

(1 – v 0 2 /c 2)E 2 /c 2 + 2(v 0 /c )p x E /c p 2 = m 2 c 2 .

При v 0 /c 1 формула переходит в известное выражение СТО :

E 2 /c 2 – p 2 = m 2 c 2 .

Пространство и время оказываются взаимосвязанными, однако по иным, чем в СТО, законам. Метрику пространства-времени в инерциальной системе отсчета определяют коэффициенты инвариантной квадратичной формы:

ds 2 = c 2 dt 2 – (1 – v 0 2 /c 2)dx 2 – 2v 0 dtdx dy 2 – dz 2 .

Важным следствием такой метрики является анизотропия пространства инерциальных систем. Из такой анизотропии вытекают нарушение закона сохранения момента импульса (отметим, что отклонение от закона сохранения момента для систем отсчета, абсолютная скорость которых мала v 0 /c uv 0 /c 2 , где u относительная скорость вращательного движения), а также зависимость скорости света от направления (α") распространения волны:

с "(α") = с –1 .

Асимптотика преобразований (1):

  1. Преобразования (1) переходят в классические преобразования Галилея – Ньютона при малых относительных скоростях частиц (u 01 /c v 1 /c
  2. Преобразования (1), примененные к частицам, абсолютная скорость которых (v 2) близка к c , переходят в преобразования Лоренца СТО , если мала абсолютная скорость лабораторной (земной) системы отсчета (v 1 /c
  3. Преобразования (1) теряют смысл при v c , что имеет простое физическое объяснение: материя, состоящая из частиц, связанных силами электромагнитного взаимодействия, не может существовать при скоростях, превышающих скорость распространения взаимодействия (частицы материи распадутся, если v c , поскольку при этом условии волна взаимодействия между элементами, составляющими частицы, не успевает за движением этих элементов).

Таким образом, СЭТ представляет собой более общую, чем СТО, механику и позволяет установить границы применимости последней.

Экспериментальное обоснование концепции эфира

Явление анизотропии скорости распространения света в движущихся системах отсчета позволяет экспериментально установить факт движения инерциальной системы отсчета относительно абсолютной. Однако существуют проблемы и закономерности (доказательство которых дано в ), ограничивающие выбор измерительных методик:

  1. Невозможность определения абсолютной скорости объекта интерференционнымиметодами (на оптических линиях, неподвижных в лабораторной системе координат).
  2. Проблема синхронизации часов, разнесенных в пространстве, без предварительного знания величины и направления абсолютной скорости системы отсчета.

Опыты С. Маринова

Серия экспериментов по определению абсолютной скорости Земли, отвечающих вышеуказанным закономерностям, впервые была выполнена Стефаном Мариновым (Австрия). В 1984 г. он поставил эксперимент , являющийся развитием опыта Физо с зубчатым колесом по измерению скорости света. Измерялась разность световых скоростей в двух противоположных направлениях (рис. 1).

Рис. 1. Схема опыта С. Маринова

Свет от лазера разделялся на два луча 1 и 3 (процесс разделения на рисунке не показан) и проходил путь в противоположных направлениях между двумя синхронно вращающимися дисками. Диски с отверстиями по периферии, жестко закрепленные на общей оси, выполняли роль синхронизированных затворов, формирующих импульсы света, проходящие к фотодетекторам 2 , 4 . Абсолютная скорость Земли определялась по формуле:

где ∆I 1 , ∆I 2 – разность токов, регистрируемых в детекторе тока 5 при двух различных частотах вращения оси N 1 и N 2 . Проблема синхронизации затворов решена применением жесткой, механической связи между дисками посредствам вала. Значение абсолютной скорости Земли, определенное в эксперименте, составило 362 ± 40 км/с . Вариант эксперимента на связанных зеркалах, выполненный тем же автором , дал близкий результат.

Описанный опыт Маринова не мог быть выполнен до появления лазерной технологии, позволяющей получать достаточно узкий пучок света. Так, несмотря на то, что идея подобного опыта была предложена еще Майкельсоном и Морли, осуществить его во времена становления СТО было невозможно.

Интерференционный способ определения абсолютных скоростей

Альтернативный способ измерения абсолютных скоростей непосредственно вытекает из закона преобразования (1): t 2 = γt 1 , по которому относительное замедление времени в двух инерциальных системах зависит от их абсолютных скоростей v 1 , v 2 . Рассмотрим двое часов, одни из которых движутся вдоль вектора абсолютной скорости Земли, а вторые в противоположном направлении, соответственно абсолютная скорость одних будет больше абсолютной скорости Земли, а других меньше. Следствием такого движения, как видно из (1), станет замедление темпа хода одних часов и ускорение темпа других по сравнению с часами, неподвижными относительно Земли. Роль часов в описанной ниже идее эксперимента выполняют линии задержки светового сигнала, движущиеся в противоположных направлениях относительно земной системы (рис. 2).

Рис. 2. Интерференционный опыт на движущихся оптических линиях

Свет от источника 1 (лазера) после расщепления 2 проходит через линии задержки 4 и 5 (катушки с намотанным световодом длиной L и показателем преломления n ), с выхода которых световые сигналы поступают на фазовый дискриминатор 3 , регистрирующий сдвиг фаз (∆φ) в момент, когда катушки занимают определенное положение в пространстве. Фазовый дискриминатор и катушки жестко крепятся к цилиндру. Цилиндр со световодами вращается с угловой скоростью ω, так что направление вектора линейной скорости катушек (u ) меняется (u = ωr, где r – радиус цилиндра). Абсолютная скорость Земли определяется по формуле:

Приведем параметры эксперимента, описанного в для длины световой волны λ = 0,5 мкм: высота цилиндра 1,2 м, радиус r = 16 см, скорость вращения ω = 3600 об/мин (u = 60 м/с). Необходимая длина световода L составит 2,5 км, при расчетной точности измерения абсолютной скорости Земли dv = 3 км/с (что на порядок точнее, чем в опыте Маринова).

Эфир и космология

Результаты опытов Маринова позволяют выдвинуть гипотезу о том, что т.н. реликтовое излучение Вселенной является собственным шумом эфира, поскольку значение скорости, измеренное в опытах , близко к скорости Земли (Солнечной системы) по отношению к фону реликтового излучения, полученной из астрономических наблюдений. В этом случае «реликтовое» излучение не является собственно реликтовым, а значит, не служит доказательством происхождения Вселенной по теории Большого взрыва. Другой аргумент сторонников теории Большого взрыва состоит в объяснении красного смещения спектра далеких звезд эффектом Доплера, вследствие разлета галактик. Однако существуют альтернативные объяснения. Например, причинами смещения спектра могут являться: неоднородность эфира – изменение его свойств от центра Вселенной к периферии (в предположении, что наша Галактика находится в центральной области Вселенной), или уменьшение энергии электромагнитной волны вследствие прохождения гигантского расстояния в среде-носителе, при этом поглощенная эфиром доля энергии впоследствии может излучаться в виде шума (предполагается, что процент поглощенной энергии зависит только от пройденного расстояния и не зависит от частоты волны). Концепция эфира позволяет обосновать более естественный взгляд на Вселенную. Вселенная, как и эфир, является вечной, и, следовательно, не нуждается в объяснениях своего происхождения. Составляющие её структурные элементы (галактики) непрерывно обновляются, на смену погибающим, старым рождаются новые, молодые. Иного взгляда на эволюцию Вселенной придерживаются последователи концепции физического вакуума, объясняющие возникновение Вселенной путём взрыва, связанного с рождением элементарных частиц в результате одного из фазовых переходов в вакууме. Вселенная, в соответствии с теорией Большого взрыва, не вечна, её ожидает гибель либо в результате разлета галактик («холодная смерть» – модель расширяющейся Вселенной), либо в результате коллапса («горячая смерть» – модель осциллирующей Вселенной). Соответственно галактики гибнут либо в одиночестве (первая модель), либо коллективно (вторая модель). В истории науки еще не было теории более «оптимистичной», чем теория Большого взрыва.

О том, что теория Большого взрыва является крайне спорной в современной науке, свидетельствуют многочисленные работы ученых – физиков и астрономов. Так шведский астрофизик, лауреат Нобелевской премии Х. Альфвен говорит: «Эта космологическая теория представляет собой верх абсурда – она утверждает, что вся Вселенная возникла в некий определенный момент подобно взорвавшейся атомной бомбе, имеющей размеры с булавочную головку. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии «Большого взрыва» служит то, что она является оскорблением здравого смысла: credo, quia absurdum («верую, ибо это абсурдно»)! Когда ученые сражаются против астрологических бессмыслиц вне стен «храмов науки», неплохо было бы припомнить, что в самих этих стенах подчас культивируется еще худшая бессмыслица.» .

Заключение

Концепция эфира, возрожденная на основе СЭТ, и экспериментально подтвержденная в опытах Маринова принципиально отличается от концепции физического вакуума, представления о котором развились из принципа относительности. Основные различия двух концепций заключаются в следующем:

  1. Согласно эфирной концепции электромагнитная волна представляет собой распространение возбуждения неподвижной среды-эфира. В инерциальных системах отсчета имеет место зависимость скорости света от направления распространения волны. Альтернативный взгляд сложился в современной физике: свет не нуждается в среде носителе и движется как корпускула, а скорость распространения света изотропна и инвариантна в инерциальных системах.
  2. Все, что нас окружает, находится в эфире. Структура и динамика свойств его элементов определяют такие фундаментальные физические понятия, как пространство и время. Таким образом, эфир, с которым можно связать абсолютную систему отсчета координат и времени, это и есть Абсолютное пространство-время вечной Вселенной. В отличие от эфира, с физическим вакуумом невозможно связать систему отсчета, а возникающая из вакуума Вселенная имеет конечное время жизни.
  3. Эфирной среде присущи все атрибуты материального объекта: она шумит в радиочастотном диапазоне («реликтовое» излучение), является переносчиком электромагнитных волн, относительно эфира можно экспериментально выявить скорость тел и частиц. Физический вакуум в этом смысле – объект виртуальный (не поддающийся непосредственной регистрации).

Признание существования эфира – это окончательный отказ от принципа относительности и переход к представлению о единстве божественного мира, объединяемого всепроникающей средой – эфиром. Эта среда определяет абсолютную систему отсчета пространственных координат и времени. В социальной и духовной сферах, в которые принцип относительности проник в форме либерализма и политеизма, отказ от относительности морально-нравственных ценностей означает абсолютизацию понятий добра, морали и справедливости.

Обухов Юрий Алексеевич,
Захарченко Игорь Иванович,
e-mail: [email protected] .

Источники информации:

  1. Калитеевский Н.И. Волновая оптика. – М.: Высшая школа, 1995.
  2. Лоренц Г.А., в сб. Принцип относительности. – М.: Атомиздат, 1973.
  3. Обухов Ю.А., Захарченко И.И., Светоносный эфир и нарушение принципа относительности , 2001.
  4. Ландау Л.Д., Лифшиц Е.М., Квантовая электродинамика. – М.: Наука, 1989.
  5. Паршин Д.А., Зегря Г.Г. Лекция 27 .
  6. Ландау Л.Д., Лифшиц Е.М. Теория поля. – М., Наука, 1988.
  7. Маринов С. Физическая мысль России. Т. 2, 1995.
  8. Marinov S. General Relativity and Gravitation. 12, p. 57, 1980.
  9. Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983.
  10. Захарченко И.И., Обухов Ю.А. Заявка на изобретение №2001114292, 2001.
  11. Будущее науки. Международный ежегодник. Вып. 12. – М., стр. 64, 1979.

См. также:

  1. Об эфирном ветре . , 1999.
  2. Петров В.В. Опыт Майкельсона – Морли и гипотеза Френеля. , 2001.
  3. Эстерле О.В.

Физический вакуум

В современной физике термин «вакуум» используется в двух смыслах. Первый, наиболее распространенный, соответствует сильно разряженным газам. Второй (физический вакуум), используемый в теории полей, соответствует состоянию, в котором полностью отсутствуют реальные частицы. Физический вакуум – это независимая, универсальная, имеющая чрезвычайно специфические свойства физическая среда, которую ни в коем случае нельзя идентифицировать с пустотой, пустым геометрическим пространством. Эта удивительная среда играет исключительно важную роль в картине фундаментальных взаимодействий.

Физический вакуум как новый уровень реальности появился в качестве объекта исследования в первой половине прошлого столетия. Причем разные теории давали о нем разное представление. Если в теории Эйнштейна вакуум рассматривался как «ничто» – пустое четырехмерное пространство, наделенное геометрией Римана, то, например, в квантовой теории Дирака вакуум представлял собой «нечто» – своего рода «кипящий бульон», состоящий из виртуальных частиц – электронов и позитронов.

Были предприняты многочисленные попытки для объединения этих представлений в рамках программы создания единой теории поля (ЕТП).

Со временем были сформированы две глобальные идеи: программа Римана – Клиффорда – Эйнштейна, согласно которой «в физическом мире не происходит ничего, кроме изменения кривизны пространства, подчиняющегося закону непрерывности», и программа Гейзенберга – Иваненко, предлагающая построить все частицы материи из частиц спина 1/2 (2). То есть первая программа опиралась только на использование геометрических характеристик пространства-времени («ничто»), а вторая – только на физические свойства частиц («нечто»).

Долгое время проблема объединения этих программ заключалась в том, что, по словам известного теоретика Джона Уиллера, «мысль о получении понятия спина из одной лишь классической геометрии представляется невозможной». То есть физическая сущность собственного момента частиц, по мнению Уиллера, не могла быть объяснена или выведена из известных геометрических свойств пространства – времени.

В науке рано или поздно решение находится, если, конечно, его ищут. Так, английский математик В. Клиффорд утверждал, что в физическом мире не происходит ничего, кроме изменения кривизны пространства, а материя представляет собой сгустки пространства, своеобразные холмы кривизны на фоне плоского пространства. Используя идеи Клиффорда, Эйнштейн в свое время сумел найти глубокую взаимосвязь абстрактного геометрического понятия кривизны пространства с физическими проблемами гравитации (ОТО).

Оказалось, что объединение программ «ничто» и «нечто» возможно, если допустить, что в физической картине мира фундаментальную роль играет скручивание (торсия) геометрической метрики. Скручивание – характеристика пространства-времени, которая определяется собственным моментом вращения объекта.

Английский ученый Р. Пенроуз сумел записать геометрические уравнения Эйнштейна в спиновом виде и доказал, что геометрические характеристики пространства-времени можно рассматривать в качестве величин, определяющих физические процессы и явления с учетом их статуса первичной реальности. Это кажется столь же невероятным, как возможность вывести из чисто физических данных геометрические характеристики пространства – времени (1).

Это открытие Пенроуза является таким же фундаментальным и столь же трудно понимаемым, как общая теория относительности Эйнштейна. Большинству людей, исповедывающих общепринятый подход к пространству и времени, вообще чрезвычайно тяжело представить кривизну пространства и скручивание, не говоря уж о том, как из этих геометрических свойств можно получить какие-либо знания о чисто физических свойствах этого пространства.

Для наших читателей мы решили привести весьма упрощенный пример, хотя понимаем, что всякое сравнение хромает, особенно если оно касается пространства Вселенной. Представьте себе объем комнаты, в которой вы находитесь. Давайте разобьем этот объем на огромное количество маленьких кубиков с помощью взаимно пересекающихся лучей света, исходящих из отверстий в потолке и в двух ортогональных стенах. Конечно, каждый такой элементарный кубик является абстракцией. А теперь представим, что отдельный кубик под действием каких-то условных внешних сил начинает деформироваться так, что обязательно имеют место угловые перемещения линейных элементов внутри пространства этого деформируемого кубика. Именно так можно представить скручивание пространства внутри каждого элементарного кубика, внутри комнаты, «внутри» мироздания. Такое скручивание порождает понятие кривизны пространства. А искривленное пространство-время – это уже гравитация.

Р. Пенроуз математически точно доказал, что именно спиноры, описывающие частицы со спином 1/2, определяют топологические и геометрические свойства пространства – времени. Словом, «ничто» и «нечто» объединились (как волна – частица) в единую сущность качественно нового физического объекта, который, по-видимому, обладает иной, нежели квантовая, природой.

Объединение программ Римана – Клиффорда – Эйнштейна и Гейзенберга – Иваненко в конце XX века завершил российский ученый академик Г. И. Шипов. Используя геометрические уравнения, записанные в спиновом виде и введя в рассмотрение принцип вращательной относительности (добавил шесть дополнительных координат вращения), Шипов получил систему уравнений, описывающих физический вакуум аналитически так же точно, как законы Ньютона описывают движение физического тела (21). Это решение наряду с обычными физическими полями (электромагнитное, гравитационное, слабое и сильное взаимодействия) описывало еще одно, неизвестное ранее поле, названное торсионным.

Чрезвычайно важно, что теория физического вакуума, разработанная Г. И. Шиповым, после соответствующих упрощений приводит к уравнениям и принципам квантовой механики. Кроме того, она отвечает на целый ряд поставленных выше вопросов.

Прежде всего удалось определить волновую функцию в уравнении Шредингера: согласно теории Шипова, она представляет собой реальное физическое поле – поле инерции. Теоретически установлена связь между полем инерции и торсионными полями, определяемыми кручением пространства; детерминизм и причинность в квантовой механике существуют, хотя неизбежна и вероятностная трактовка динамики квантовых объектов; частица представляет собой предельный случай чисто полевого образования при стремлении массы (или заряда) этого образования к постоянной величине; именно в этом предельном случае происходит возникновение корпускулярно-волнового дуализма; в квантовой теории измеряется ситуация, представляющая собой комбинацию полей, образующих измерительный прибор и измеряемый объект (21). По мнению Г. И. Шипова, современная квантовая теория не является полной, так как она не согласуется с принципом вращательной относительности.

Подтвердились догадки Эйнштейна, что квантовая теория не полна, и его предположение о том, что «более совершенная квантовая теория может быть найдена на пути расширения принципа относительности».

Модель торсионного вакуума . Первая попытка построения модели «ничто – нечто», предпринятая российскими учеными под руководством академиков А. Е. Акимова и Г. И. Шипова, опирается на теорию торсионных полей (2). В рамках этой теории они постулируют качественно новый физический объект – фитон, который одновременно обладает как свойствами частиц (сочетание волновых функций, например, электрона и позитрона), так и пространственно-временной структурой, определяющей собственный момент спина этого объекта через скручивание определенных пространственно-временных характеристик.

До модели Акимова – Шипова даже самые совершенные модели в квантовой теории поля (например, в теории струн) рассматривали первичные объекты (струны) как своеобразные кванты только пространственно-временной структуры. А в теории торсионных полей фитон сочетает в себе «ничто» (пространственно-временная структура) с «нечто» (свойства квантовых частиц) (22).

По мнению многих ученых, новая модель имеет шанс превратиться в реалистичную программу ЕТП. Особенно полезной для реализации этой идеи оказалась возможность достижения истинной электронейтральности электрон-позитронного физического вакуума при условии, что круговые волновые пакеты электрона и позитрона будут вложены друг в друга. Так как обе частицы обладают спином, то система «частица – античастица» представляет пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом. Такая система из частиц и античастиц, вложенных друг в друга, и называется фитоном (2).

Как пишет Г. И. Шипов, «решения уравнений первичного вакуума показывают, что в природе существуют объекты, у которых нет ни массы, ни заряда, а есть только спин. Из-за отсутствия потенциальной энергии взаимодействия у этих объектов их проникающая способность оказывается значительной».

В современной физике известна элементарная частица нейтрино, которая (теоретически), подобно фитонному (первичному) торсионному полю, обладает только спином. Экспериментально установлена высокая проникающая способность нейтрино. Известно, что нейтрино может пройти сквозь Землю без взаимодействия. Считается, что нейтрино обладает энергией, правда, однозначно не установлено, какой энергией: действительной или мнимой. Если предположить, что энергия нейтрино мнимая (существуют эксперименты, указывающие на это), то тогда скорость распространения нейтрино должна превышать скорость света. Причем чем меньше мнимая энергия нейтрино, тем больше его скорость. В пределе, когда мнимая энергия обратится в ноль (при отличном от нуля импульсе), скорость нейтрино должна устремиться к бесконечности.

У первичного торсионного поля энергия и импульс равны нулю с самого начала, поэтому говорить о скорости распространения этого поля не имеет смысла. Оно как бы сразу есть везде и всегда.

В отличие от предлагаемых ранее моделей, например модели Дирака (модель виртуальных частиц) или модели аксионов Хиггса, новая модель первичного физического вакуума на основе фитонного ансамбля представляет упорядоченную структуру. Не тот ли это порядок, о котором говорят Д. Бом и Дж. Чу?

Поляризация физического вакуума . В такой упорядоченной модели легко определяются основные случаи поляризации физического вакуума под влиянием внешних источников. Что это значит?

Физический вакуум изменяет свои свойства в зависимости от того, с какими материальными объектами он взаимодействует. Например, если в какой-либо точке пространства появится некое массивное тело, обладающее массой, то это вызовет соответствующие изменения в поляризации среды физического вакуума, которые определят характер гравитационного поля.

Аналогично, если в какой-либо точке пространства появится частица, несущая заряд, он изменит поляризацию среды физического вакуума и в своем новом состоянии среда приобретет свойства, которые определят специфику электромагнитного взаимодействия.

На уровне элементарных частиц также существуют различные силы взаимодействия, проявление которых описывается с помощью понятия «физическое поле». Например, элементарные частицы имеют массу, которая создает гравитационное поле, являющееся причиной взаимного притяжения тел в космическом пространстве. Электрический заряд, которым также обладает элементарная частица, является источником электромагнитного поля, обуславливающего взаимодействие между заряженными элементарными частицами. Иными словами, все поля, которые мы можем констатировать на макроуровне, создаются их первичными носителями – элементарными частицами.

Логично предположить, что любой независимый параметр, характеризующий физическую сущность элементарных частиц, представляет собой источник некоего фундаментального поля, обуславливающего специфическое взаимодействие между ними. Другими словами, любому независимому параметру, характеризующему элементарные частицы, должно соответствовать материальное поле, являющееся причиной взаимодействия частиц посредством данных параметров.

Если это так, то наряду с известными фундаментальными полями гравитации и электромагнитного взаимодействия должно существовать еще одно фундаментальное поле, соответствующее независимому параметру «спин» элементарных частиц, который характеризует их собственный момент вращения. Он независим, ибо не связан ни с массой, ни с зарядом.

Иными словами, должно существовать некое новое фундаментальное взаимодействие между элементарными составляющими материи, обусловленное их вращением вокруг собственной оси. Это также должно означать, что в природе все вращающиеся объекты должны каким-то образом взаимодействовать друг с другом. Именно об этом говорил Э. Картан в своих исследованиях в 1913 году: «В природе должны существовать поля, порождающиеся вращением».

Рассуждая подобным образом, мы приходим к выводу о необходимости существования в природе некоего нового механизма поляризации, соответствующего физическому полю спина вращающихся частиц. Тела, обладающие таким свойством, поляризуют среду физического вакуума уже новым, третьим способом. Именно в новом состоянии этой среды физический вакуум приобретает особые свойства, обуславливающие так называемое спиновое, или торсионное, поле (от франц. torsion – вращать) (23).

Таким образом, физический вакуум проявляется как электромагнитное поле в том случае, когда он поляризован зарядом (Е). Находясь в состоянии продольной спиновой поляризации, он проявляется как гравитационное поле (G), а спиновая поперечная поляризация (S) соответствует новому типу дальнодействия в физической реальности, обозначенному как первичное торсионное поле (ПТП). Это поле существенно нелинейно и обладает сложной внутренней структурой, что позволяет ему быть носителем значительных объемов информации (24). Очевидно, что торсионное поле обладает свойствами, принципиально отличающими его от других фундаментальных физических полей.

По этому поводу болгарский физик Б. Палюшев пишет: «Сочетание вероятностной картины с нелинейностью является новым веянием в науке» (17).

Физические параметры, характеризующие EGS-поля, представляют собой независимые кинематические величины, которые определяют характер универсальных дальнодействующих физических сил.

«Интегрированный» физический вакуум . Исследования показали, что физический вакуум состоит из двух причинных слоев, двух уровней: торсионного и квантового. Структура физического вакуума на основе фитонов отличается от структуры физического вакуума на квантовой основе.

Фитонный, или торсионный, вакуум – это глубокий и упорядоченный уровень реальности, связанный с теми физическими свойствами, которые можно свести к разнообразным геометрическим качествам пустого пространства (1). Квантовый вакуум касается сущности фрагментирования в реальном, вещественно-энергетическом мире. Физический вакуум, состоящий из двух уровней, назван «интегрированным» вакуумом.

«Интегрированный» физический вакуум обнаруживает непосредственную связь с квантовой нелокальностью. Как выяснилось в результате исследований, объекты квантовой нелокальности – это прежде всего объекты, обладающие собственным моментом вращения (спином) (1). Оказалось, что теория торсионных полей способна объяснить явления квантовой нелокальности.

До появления теории торсионных полей перевес в споре о нелокальности был на стороне Бора, и попытки Эйнштейна доказать существование скрытых параметров не имели успеха. Однако сегодня наука обладает возможностью объяснения механизмов нелокальности, а постулирование нового, торсионного слоя в физическом вакууме, по существу, означает введение таких параметров в теорию. Но признание этих удивительных результатов связано с радикальным изменением нашего понимания самой сущности физической реальности.

Вытекающая из теории физического вакуума теория торсионных полей, учитывающая нелинейность, утверждает, что на фундаментальном уровне физических процессов действует какой-то более глубокий, чем теория вероятности, принцип. Этот принцип свидетельствует о том, что за вероятностной картиной мира скрывается еще более глубокое содержание или причина, в известном смысле имеющая логическое объяснение. Вполне возможно, что именно первичные торсионные поля представляют тот самый имплицитный уровень, о котором говорят Д. Бом и Дж. Чу. В таком подходе обнаруживается аналогия с утверждением Бома о том, что наша осязаемая повседневная реальность на самом деле всего лишь иллюзия. «Под ней находится более глубокий порядок бытия – беспредельный и изначальный уровень реальности, – из которого рождаются все объекты…»

Свойства торсионных полей

Рассмотрим основные свойства торсионных полей.

1. Вращение элементарных частиц характеризует новое геометрическое свойство пространства и времени, называется торсией, или скручиванием, и связано с вращением самих пространства и времени.

2. Торсионные поля в противоположность гравитационному и электромагнитному полям сугубо нелинейные. Например, электромагнитное взаимодействие возникает всегда и только при том условии, если есть заряд. Наложение (то есть одновременное воздействие в одной и той же точке) двух электромагнитных полей также, в свою очередь, является электромагнитным полем.

С торсионным полем дела обстоят совсем по-другому. Наложение двух разных торсионных полей не всегда в результате дает торсионное поле. С другой стороны, существуют ситуации, когда торсионные поля могут генерировать сами себя . Это свойственно только нелинейным физическим полям. Другими словами, в определенных состояниях физический вакуум может самостоятельно, спонтанно, без видимых причин создавать, генерировать торсионные поля. В этом смысле торсионные поля могут быть генерированы за счет определенной геометрической формы или мыслеформы, то есть они имеют подчеркнуто информационный характер. Человеческое мышление, например, является своеобразным генератором торсионных полей. Биополе живых организмов также является разновидностью торсионного поля. «Можно сказать, что биологическое поле на базовом уровне представляет собой молекулярные торсионные поля, излучаемые хроматином (хромосомами)» (25).

3. Торсионные поля имеют еще одну важную особенность. Некоторые физические поля могут существовать и проявляться в чистом виде. Например, когда есть какая-либо масса, то вокруг нее всегда возникает только гравитационное поле, которое проявляется в чистом виде, без какой-либо примеси других физических полей. Когда речь идет об электромагнитных полях, то оказывается, что их всегда сопровождают торсионные поля. Торсионные и электромагнитные поля не могут существовать в чистом виде. Они всегда в той или иной степени наложены одно на другое. Физический вакуум так устроен, что поляризация в нем среды, вызванная электрическим зарядом тела, всегда сопровождается неизбежным, обязательным возникновением и компонентов торсионного поля. И наоборот, торсионные поля не могут существовать в чистом виде, самостоятельно, отдельно от физической среды электромагнетизма. Любое электромагнитное поле одновременно является источником торсионного поля. В сочетании с электромагнитными свойствами материя торсионного вакуума приобретает особую структуру, основным компонентом которой является фитон. Оказывается, что в торсионном поле кроется разгадка так называемых скрытых параметров, и с помощью торсионного поля можно объяснить такое явление, как нелокальность, или «квантовая связанность», элементарных частиц.

4. Торсионные поля имеют осевую симметрию. В то время как все другие поля имеют сферическую симметрию и распространяются во все стороны одинаково, в случае с торсионным полем существуют отдельные направления в пространстве. Это связано с необходимостью наличия определенного направления при ориентации оси вращательного движения.

5. Торсионный сигнал распространяется мгновенно (его скорость в миллиард раз превышает скорость света) и проходит через любые естественные среды без затрат энергии. Дело в том, что при осевой симметрии не работает закон обратных квадратов, поэтому интенсивность торсионного поля не зависит от расстояния до источника поля и торсионные поля обладают исключительной проникающей способностью в любых природных средах.

6. Существует еще одно важное и необычное свойство торсионных полей. Так, например, частицы, имеющие одинаково ориентированные спины (то есть вращающиеся в одном направлении вокруг своей оси), притягиваются друг к другу. По этой причине два электрона являются связанными друг с другом в химических валентных связях элементов из таблицы Менделеева, несмотря на наличие силы электрического отталкивания между ними, обусловленного их одноименными электрическими зарядами. Это обстоятельство красноречиво свидетельствует о мощности и силе торсионного взаимодействия, особенно с учетом того, что его интенсивность не уменьшается с увеличением расстояния между телами. Это может быть причиной квантовой связанности, или квантовой нелокальности. Данное свойство характеризуется тем, что сила, связывающая между собой два электрона с одинаково ориентированными спинами, заставляет их постоянно оставаться в связанном состоянии независимо от расстояния, на которое они могут быть удалены друг от друга после того, как однажды испытали силу взаимного торсионного притяжения, находясь в непосредственной близости друг от друга. Вспомним эксперименты Аспекта с частицами, «одна из которых находилась в Лондоне, а другая – в Нью-Йорке».

И наоборот, частицы, находящиеся рядом друг с другом, но имеющие противоположно ориентированные спины, испытывают столь же мощное по своей силе торсионное отталкивание.

Новое понимание физической реальности

Теория физического вакуума Шипова соединила воедино мир плотных форм и тонкоматериальный мир. Решение системы уравнений, полученной Шиповым, позволило математически смоделировать представление о мире как о системе, состоящей из семи уровней реальности: Абсолютное «Ничто», первичные торсионные поля кручения, физический вакуум (эфир), плазма, газ, жидкость, твердое тело (21).

Оказалось, что для каждого из шести уровней реальности можно написать содержательные уравнения, решение которых дает описание свойств материи и вещества на каждом из этих уровней. Что касается седьмого уровня, то полученные тождества не позволяют сделать выводы относительно каких-либо свойств Абсолютного «Ничто». Этот уровень не поддается математическому объяснению.

Исходя их теоремы Е. Ньютера, Абсолютное «Ничто» может рассматриваться как расслоение двух основных сущностей. Одна соответствует части, описанной как полностью упорядоченное состояние Абсолютного «Ничто», а другая – как полностью хаотичное состояние, о котором нельзя сказать ничего конкретного. На этом уровне реальности нет ни наблюдателя (сознания), ни формы материи (вещества, энергии). Но именно неопределенность, вытекающая из полного хаоса во втором состоянии Абсолютного «Ничто», порождает видимые реальности в нашем физическом мире.

Для того чтобы осознать Абсолютное «Ничто» и сделать его упорядоченным, необходимо некое активное начало. Академик Шипов пишет: «Пустое пространство предполагает существование „первичного Сознания или Сверхсознания“, способного осознать Абсолютное „Ничто“ и сделать его упорядоченным. На этом уровне реальности решающую роль играет „первичное Сознание“, выступающее в роли активного начала – Бога и не поддающегося аналитическому описанию» (26). Иными словами, активные действия информационного характера некоего Сверхсознания, или Бога, непонятные человеческому разуму, приводят к появлению универсального компонента физического пространства – времени, первичного торсионного поля, который, по всей вероятности, отражает качества этого Сверхсознания.

По поводу седьмого уровня реальности академик А. Е. Акимов говорит: «Абсолютное „Ничто“ – это среда, которая обладает, с одной стороны, программой, матрицей возможного. И в этой матрице заложены структура и свойства всех нижних уровней реальности. С другой стороны, для реализации этой матрицы, этого плана, необходимо некое воздействие, или, как бы мы сказали, воля и сознание. Помимо наличия самих матриц, воля и сознание – это те два свойства, которыми неотвратимо должен обладать данный уровень. Их роль состоит в осознанной реализации (в эзотерике бы сказали – в воплощении) тех планов и возможностей, которые потенциально существуют в Абсолютном „Ничто“» (27).

Сознание и воля реализуют матрицу, заложенную в седьмом уровне реальности, в виде первичного вакуума, первичного торсионного поля, которое представляет собой совокупность вихрей правого и левого вращения, каждый из которых меньше размера элементарной частицы.

Такие вихри заполняют все пространство Вселенной на шестом уровне реальности – уровне полевой материи. Вихри не имеют массы покоя, взаимодействие их таково, что они не передают энергии, но передают информацию. Этот уровень не имеет никаких физических характеристик, за исключением характеристик кручения. Передача информации происходит за счет взаимодействия квантовых вихрей, причем происходит мгновенно, ибо скорость появляется тогда, когда есть понятие энергии. Если энергетического параметра нет, то отсутствует и параметр скорости.

По мнению академика Акимова, структура шестого уровня представляет собой гигантскую голограмму, заполняющую собой всю Вселенную, а следовательно, каждая точка во Вселенной обладает полнотой информации о прошлом, настоящем и будущем (27).

Итак, седьмой уровень реальности в соответствии с матрицей порождает первичное торсионное поле – торсионный вакуум, который, в свою очередь, порождает следующий уровень реальности – квантовый вакуум.

Материя квантового физического вакуума содержит в себе те же свойства, что и торсионный вакуум, плюс еще некоторые. Эта среда материальна, но не вещественна. Она содержит информацию о веществе, о том, какими могут быть, а какими не могут быть параметры элементарной частицы. При этом сами частицы в вакууме отсутствуют. Это полевая, информационная структура, но она порождает элементарные частицы, которые при определенных условиях не аннигилируют, и тогда начинается образование систем типа ядер, атомов и т. д.

Совокупность квантового и торсионного вакуума представляет «интегрированный» физический вакуум.

Б. Палюшев пишет: «Информация, которая приходит от Абсолютного „Ничто“ к состоянию первичных торсионных полей, напоминает творческую работу скульптора, который из камня ваяет совершенные произведения искусства. Разница состоит лишь в том, что исходным материалом для скульптурирования является утонченная материя геометрического пространства, которая не нуждается в грубой силе при отделении предмета творения от свежего материала. „Нож“ творца является информационным, а творение можно назвать первичным полем информации, относящимся ко всей физической реальности. Именно „вибрации“, идущие от этого поля, в состоянии воздействовать на сознание человека, передавая ему скрытую в нем информацию…» (1).

С точки зрения профессора Палюшева, представленная информация приводит к новому пониманию вмешательства Бога. Новым является то, что Бог создает по своему образу и подобию не только человека, но и наполняющую среду вселенского пространства, которая обладает качествами человеческого сознания в масштабах, многократно превышающих масштабы человеческого мозга. «Это поле Всемирного Сознания – результат творческой деятельности, которая базируется не на оперировании грубой материальной вещественной средой, а на утонченных информационных процессах, протекающих на деликатной структуре геометрических полей и их отражений на свойствах первичного пространства-времени. В результате такой творческой деятельности появляется информационно насыщенная материальная среда, которая излучает свои послания через вибрации, имеющие совершенно новую, отличающуюся от вещественно-энергетического мира природу» (1).

Доктор философских наук В. А. Колеватов по поводу информационных потоков пишет: «Уже давно мы пришли к пониманию того, что в особенном, органическом обмене веществ между живыми телами и окружающей средой, отличающим живую природу от неживой, кроме всеми признанных двух потоков обмена (вещество и энергия) присутствует третий, самый важный и, может быть, ключевой для научного решения проблемы сущности жизни: поток обмена информацией… Поток информации оказывается для живого тела более важным, чем потоки вещества и энергии: поток информации в органическом обмене предваряет потоки вещества и энергии и управляет ими» (28).

Итак, есть все основания предполагать существование нового фундаментального взаимодействия, порожденного классическим спином, – информационного. Эксперименты показывают, что эффекты от таких взаимодействий весьма разнообразны и зачастую трудно воспроизводимы, и это затрудняет их ясную идентификацию как других фундаментальных физических взаимодействий. Тем не менее экспериментаторы все чаще фиксируют торсионные поля (например, в опытах академика Казначеева), ученые все больше склоняются к признанию новой физической реальности. Академик Казначеев утверждает: «Наша планета постоянно вращается в геокосмическом пространстве (солнечно-эфирном, гравитационном), к которому она и принадлежит. Так или иначе, но все мы на планете находимся в разнообразных торсионных полях» (29).

Это становится поводом для перехода к новой парадигме, поскольку новый вид полевой материи (информационной) уже не будет отвечать за такие традиционные физические величины, как энергия, импульс, угловой момент и др., а будет переносить информацию. Переносчиками этой информации становятся другие фундаментальные физические дальнодействующие силы, связанные с информационным блоком новой полевой формы. Любое изменение в распределении спинов будет мгновенно отражаться на структуре торсионного слоя физического вакуума, который отвечает за новое фундаментальное взаимодействие. Через специфические излучения этого поля физический вакуум воздействует своеобразным энергоинформационным образом на более грубые уровни реальности. «Такая среда обладает неограниченной способностью сохранять информацию о физическом мире, воздействуя на его структуру через особый механизм контактов, в котором выделяется уникальная возможность различать адреса характеров непрекращающихся голограмм» (1).

В огромной физической среде Вселенной, рассматриваемой в теории торсионных полей (ТТП) как единое целое, каждая бесконечно малая точка содержит неограниченный объем информации (Все во Всем). Такой подход сближает ТТП с голографической теорией Вселенной Бома и с моделью Вселенной Дж. Чу.

Кроме того, математические структуры теории торсионных полей также во многом напоминают модель, разработанную в теории имплицитного порядка Бома. Однако теория торсионных полей постулирует возможность человеческого сознания вступать в контакт с первичным торсионным полем, взаимодействовать с Сознанием Вселенной (2). И это именно то, что отсутствует в теориях Бома и Чу, хотя они считают эксплицитные элементы сознания неотъемлемым элементом Вселенной. На объединение этих теорий, которые вместе с ТТП представляют сегодня наиболее успешное описание единства, устойчивости и гармонии в отношениях между компонентами физической действительности, возлагаются большие надежды.

Такое объединение уже происходит, и связано оно прежде всего с работами академика В. П. Казначеева, который теоретически объясняет и, что самое главное, экспериментально исследует сознание человека и Сознание Вселенной, доказывает взаимосвязь околоземного голографического пространства с голографической структурой человеческого интеллекта, с голографическим пространством клетки.

Голографическую концепцию Бома – Прибрама, основанную на примере оптических голограмм, новосибирские ученые под руководством Казначеева расширили за счет торсионных голографических пространств.

Из книги КНИГА ДУХОВ автора Кардек Аллан

Глава Девятая ВМЕШАТЕЛЬСТВО ДУХОВ В МИР ФИЗИЧЕСКИЙ Проникание нашей мысли духами – Оккультное влияние духов на наши мысли и действия – Одержимые – Страдающие судорогами – Привязанность духов к некоторым людям – Ангелы-хранители. Духи-защитники, духи дружественные и

Из книги Ключ к теософии автора Блаватская Елена Петровна

Человек физический и духОВНЫЙ Спрашивающий. Рад слышать, что вы верите в бессмертие души. Теософ. Не «души», а божественного духа; ещё же точнее – в бессмертие перевоплощающегося Я. Спрашивающий. В чём же разница? Теософ. В нашей философии – очень

Из книги Пороги сновидения автора Ксендзюк Алексей Петрович

Вхождение в сновидение через семантический вакуум Коснемся одного момента, который проясняет фундаментальное качество внимания, транспортирующего осознание в сновидение (либо, наоборот, сновидение в осознание, в зависимости от того, из какой точки мысленно наблюдать

Из книги Древняя Мексика без кривых зеркал автора Скляров Андрей Юрьевич

Физический расчет возможности проскальзывания Теперь можно оценить с точки зрения физики возможность «проскальзывания» земной коры при ударе крупного метеорита, для чего достаточно воспользоваться довольно простыми соображениями. Рис. 245. Схема расчета

Из книги Новая Физика Веры автора Тихоплав Виталий Юрьевич

Физический вакуум В современной физике термин «вакуум» используется в двух смыслах. Первый, наиболее распространенный, соответствует сильно разряженным газам. Второй (физический вакуум), используемый в теории полей, соответствует состоянию, в котором полностью

Из книги Солнечный ветер автора Тихоплав Виталий Юрьевич

Глава 3 Неоднородный физический вакуум Пределы науки походят на горизонт: чем ближе подходят к ним, тем более они отодвигаются. Пьер

Из книги Великий переход автора Тихоплав Виталий Юрьевич

Основы Тонкого Мира - физический вакуум и торсионные поля Четкое математическое описание Тонкого Мира, подтвержденное экспериментальными исследованиями, дал российский ученый Г. И. Шипов.В 1967 году, заканчивая Московский университет и выполняя дипломную работу под

Из книги Осознанные сновидения автора Грин Цилия

ГЛАВА VIII ФИЗИЧЕСКИЙ РЕАЛИЗМ В ОСОЗНАННЫХ СНОВИДЕНИЯХ Как можно видеть из приводившихся ранее примеров, мир осознанных сновидений обычно хорошо имитирует мир бодрствования. Даже если человек подведен к осознанию того, что спит, каким-то фантастическим обстоятельством,

Из книги Метафизика пола автора Эвола Юлиус

11. Пол физический и пол внутренний Есть общий, единый для всего и всех принцип. Повсюду, где человеческое не выходит за пределы именно человеческого, пол есть "судьба". Существуют только мужчины и только женщины. Это - вопреки тем, кто считает, что человек рождается

Из книги Природа личной реальности. Часть 2 автора

Глава 20 Пейзажи снов, физический мир, вероятности и ваша повседневная жизнь Итак, минутку...(Шепотом.) Глава 20: «Пейзажи снов, физический мир, вероятности и ваша повседневная жизнь».(Длинная пауза в 00:06.) Поскольку вы - физические существа, даже ваши сны должны переводиться

Из книги Откровения Ангелов-Хранителей. Любовь и жизнь автора Гарифзянов Ренат Ильдарович

Физический мир Современной науке известны три состояния материи – твердое, жидкое, газообразное. Все эти три вида материи относятся к самому низшему, седьмому физическому миру.Физический мир, как и другие миры, состоит из семи уровней материи (располагаются в порядке

Из книги Счастье без границ. Поиски настоящего смысла жизни. Беседы с теми, кто его нашел автора Блект Рами

Из книги Новое позитивное мышление автора Пил Норман Винсент

Физический недостаток – не повод, чтобы говорить «невозможно» Как постоянно поддерживать свой дух на высоте, если имеются проблемы со здоровьем? Чем вдохновляться, когда физическому состоянию нанесен серьезный удар, когда вы слабы и чувствуете себя плохо? Эти вопросы

Из книги Безопасное общение [Магические практики для защиты от энергетических атак] автора Пензак Кристофер

Физический вред Защитную магию можно эффективно использовать в случае физической опасности, хотя некоторые применяют ее исключительно против энергетических атак.Заклинаниями можно защитить не только душу, но и тело. Конечно, магическими приемами не отразить

Из книги Жизнь денег автора Немцева Татьяна

Задача: превратить желание в свой физический эквивалент Богатство начинается в форме мысли. Вера снимает всякие ограничения. На Ментальном уровне самовнушение – это средство связи между сознанием, подсознанием и надсознанием. При помощи доминирующей мысли

" Физический вакуум"

Введение

Понятие вакуум в истории философии и науки обычно употреблялось для обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям. Последние рассматривались как чистые вкрапления в вакуум. Такой взгляд на природу вакуума был свойственен древнегреческой науке, основоположниками которой являлись Левкипп, Демокрит, Аристотель. Атомы и пустота - две объективные реальности, фигурировавшие в атомистике Демокрита. Пустота так же объективна, как и атомы. Только наличие пустоты делает возможным движение. Эта концепция вакуума получила развитие в работах Эпикура, Лукреция, Бруно, Галилея и др. Наиболее развернутую аргументацию в пользу вакуума дал Локк. Концепция вакуума была наиболее полно раскрыта с естественнонаучной стороны в учении Ньютона об "абсолютном пространстве", понимаемом как пустое вместилище для материальных объектов. Но уже в 17 веке все громче раздаются голоса философов и физиков, отрицающих существование вакуума, так как неразрешимым оказался вопрос о природе взаимодействия между атомами. По Демокриту, атомы взаимодействуют друг с другом только путем непосредственного механического контакта. Но это вело к внутренней противоречивости теории, так как устойчивый характер тел мог быть объяснен только непрерывностью материи, т.е. отрицанием существования пустоты, исходного пункта теории. Попытка Галилея обойти это противоречие, рассматривая малые пустоты внутри тел как связующие силы, не могла привести к успеху в рамках узкомеханистической трактовки взаимодействия. С развитием науки, в дальнейшем эти рамки были сломаны, - был предложен тезис о том, что взаимодействие может передаваться не только механическим путем, но и электрическими, магнитными и гравитационными силами. Однако это не решило проблемы вакуума. Боролись две концепции взаимодействия: "дальнодействия" и "близкодействия". Первая основывалась на возможности бесконечно большой скорости распространения сил через пустоту. Вторая требовала наличия некоторой промежуточной, непрерывной среды. Первая признавала вакуум, вторая его отрицала. Первая метафизически противопоставляла вещество и "пустое" пространство, вносила в науку элементы мистики и иррационализма, вторая же исходила из того, что материя не может действовать там, где ее нет. Опровергая существование вакуума, Декарт писал: "...что касается пустого пространства в том смысле, в каком философы понимают это слово, то есть такого пространства, где нет никакой субстанции, то очевидно, что в мире нет пространства, которое было бы таковым, потому что протяжение пространства как внутреннего места не отличается от протяжения тела". Отрицание вакуума в работах Декарта и Гюйгенса послужило отправной точкой для создания физической гипотезы эфира, продержавшейся в науке до начала 20-го века. Развитие в конце 19-го века теории о поле и появление в начале 20-го века теории относительности окончательно "похоронило" теорию "дальнодействия". Была разрушена и теория эфира, так как было отвергнуто существование абсолютной системы отсчета. Но крушение гипотезы существования эфира не означало возврата к прежним представлениям о наличии пустого пространства: сохранились и получили дальнейшее развитие представления о физических полях. Проблема, поставленная еще в античные времена, решена практически современной наукой. Вакуумной пустоты не существует. Наличие "чистой" протяженности, "пустого" пространства противоречит основным положениям естествознания. Пространство не есть особая сущность, обладающая бытием наряду с материей. Как материя не может быть лишена своих пространственных свойств, так и пространство не может быть "пустым", оторванным от материи. Этот вывод находит свое подтверждение и в квантовой теории поля. Открытие У.Лэмбом сдвига уровней атомных электронов и дальнейшие работы в этом направлении привели к пониманию природы вакуума как особого состояния поля. Это состояние характеризуется наименьшей энергией поля, наличием нулевых колебаний поля. Нулевые колебания поля проявляются в виде экспериментально обнаруженных эффектов. Следовательно, вакуум в квантовой электродинамике обладает рядом физических свойств и не может рассматриваться как метафизическая пустота. Более того, свойства вакуума определяют свойства окружающей нас материи, а сам по себе физический вакуум является исходной абстракцией для физики.

Эволюция взглядов на проблему физического вакуума

С древнейших времен, со времени появления физики и философии как научной дисциплины умы ученых беспокоила одна и та же проблема - что есть вакуум. И, несмотря на то, что к настоящему моменту многие загадки строения Вселенной решены, до сих пор остается нерешенной загадка вакуума - что он из себя представляет. В переводе с латыни вакуум - пустота, но стоит ли называть пустотой то, что таковой не является? Греческая наука первой ввела четыре первоэлемента, образующих мир - вода, земля, огонь и воздух. Каждая вещь на свете для них была сложена из частиц одной или сразу нескольких этих стихий. Дальше перед философами возник вопрос: может ли существовать место, где нет ничего - ни земли, ни воды, ни воздуха, ни огня? Существует ли подлинная пустота? Левкипп и Демокрит, жившие в 5 в. до н. э. пришли к выводу: все в мире состоит из атомов и разделяющей их пустоты. Пустота по мнению Демокрита позволяла двигаться, развиваться и совершать любые изменения, поскольку атомы неделимы. Таким образом, Демокрит первым отвел вакууму ту роль, которую он играет в современной науке. Он же поставил проблему сущего и небытия. Признавая сущее (атомы) и небытие (вакуум), он говорил, что и то, и другое является материей и причиной существования вещей на равных правах. Пустота, по мнению Демокрита также являлась материей, причем разница в весе вещей определялась разным количеством пустоты, содержащейся в них. Аристотель, считал, что пустоту можно представить, но она не существует. В противном случае считал он, становится возможной бесконечная скорость, а ее в принципе существовать не может. Следовательно, пустоты не существует. Кроме того, в пустоте не было бы никаких различий: ни верха, ни низа, ни правого, ни левого - все в ней находилось бы в полном покое. В пустоте все направления окажутся равноправными, она никак не влияет на помещенное в нее тело. Таким образом, движение тела в ней не определяется ничем, а этого быть не может. Далее понятие вакуума было заменено понятием эфира. Эфиром является некая божественная субстанция - нематериальная, неделимая, вечная, свободная от присущих элементам природы противоположностей и поэтому качественно неизменная. Эфир - всеобъемлющий и поддерживающий элемент мироздания. Как видно, древняя научная мысль отличалась определенным примитивизмом, однако она обладала и некоторыми преимуществами. В частности, ученые древности не были скованы рамками экспериментов и расчетов, поэтому они стремились к пониманию мира в большей степени, чем к его преобразованию. Но во взглядах Аристотеля уже появляются первые попытки понять строение материи, которая нас окружает. Он определяет некоторые ее свойства, исходя из качественных предположений. Теоретическая борьба с пустотой продолжалась и в средние века. "...Я утвердился во мнении, - подвел итог своим опытам Блэз Паскаль, - которое всегда разделял, а именно, что пустота не есть что-либо невозможное, что природа вовсе не избегает пустоты с такой боязнью, как это многим кажется". Опровергнув опыты Торричелли с получением пустоты "искусственно", он определил место пустоты в механике. Появление барометра, а затем и воздушного насоса является практическим результатом этого. Первым же, кто определил место пустоты в классической механике, был Ньютон. По Ньютону, небесные тела погружены в абсолютную пустоту. И она всюду одинакова, в ней отсутствуют различия. Фактически Ньютон для обоснования своей механики привлек то, что Аристотелю не позволяло признать возможность пустоты. Таким образом, существование пустоты было уже доказано экспериментально, и даже положено в основу самой влиятельной в то время физико-философской системы. Но, несмотря на это, борьба с этой идеей разгорелась с новой силой. И одним из тех, кто решительно не был согласен с идеей существования пустоты, был Рене Декарт. Предсказав открытие пустоты, он заявил, что это не настоящая пустота: " Мы считаем сосуд пустым, когда в нем нет воды, но на самом деле в таком сосуде остается воздух. Если из "пустого" сосуда убрать и воздух, в нем опять что-то должно остаться, но это "что-то" мы просто не почувствуем...". Декарт пытался оттолкнуться от понятия пустоты, введенного ранее, дал ей имя эфир, которое использовалось еще древнегреческими философами. Он понимал, что называть вакуум пустотой неправильно, ибо он не является пустотой, в прямом смысле этого слова. Пустоты абсолютной, по Декарту, не может быть, поскольку протяженность есть атрибут, непременный признак и даже сущность материи; а раз так, то всюду где есть протяженность - то есть само пространство - должна существовать и материя. Именно поэтому он упорно отталкивался от понятия пустоты. Материя бывает, как утверждал Декарт, трех родов, состоит из трех видов частиц: земли, воздуха и огня. Частицы эти "разной тонкости" и двигаются по-разному. Поскольку абсолютная пустота невозможна, то всякое движение любых частиц приводит на их место другие, и вся материя находится в непрерывном движении. Из этого Декарт делает вывод, что все физические тела - результат вихревых движений в несжимаемом и нерасширяющемся эфире. Эта гипотеза, красивая и эффектная, оказала огромное влияние на развитие науки. Идея представить тела (и частицы), как некие вихри, сгущения в более тонкой материальной среде оказалась очень жизнеспособной. А то, что элементарные частицы следует рассматривать как возбуждения вакуума, - признанная научная истина. Но, тем не менее, такая модификация эфира, ушла с физической сцены, ибо была слишком "философской", и пыталась объяснить сразу все в мире, наметив строение мироздания. Отношение к эфиру Ньютона заслуживает отдельного упоминания. Ньютон то утверждал, что эфир не существует, то наоборот боролся за признание этого понятия. Эфир был незримой сущностью, одной из тех сущностей, против которых категорически и весьма последовательно возражал великий английский физик. Он исследовал не виды сил и их свойства, а их величины и математические соотношения между ними. Его всегда интересовало то, что можно определить при опыте и измерить числом. Знаменитое "Гипотез не измышляю!" означало решительный отказ от домыслов, не подтвержденных объективными опытами. И в отношении к эфиру Ньютон не проявлял такой последовательности. Происходило это вот почему. Ньютон не только верил в бога, - вездесущего и всемогущего, но и не мог представить его себе иначе, чем в виде особой субстанции, пронизывающей все пространство и регулирующей все силы взаимодействия между телами, а тем самым - все движения тел, все, что происходит в мире. То есть бог - эфир. С точки зрения церкви - это ересь, а с точки зрения принципиальной позиции Ньютона - домысел. Поэтому Ньютон не смеет писать об этом убеждении, а только изредка высказывает его в беседах. Но авторитет Ньютона прибавил значимости понятию эфира. Современники и потомки обратили больше внимания на высказывания физика, которые утверждали о существовании эфира, чем на те, что отрицали его существование. Под понятием "эфир" в ту пору подводилось все, что, как мы знаем теперь, вызывается гравитационными и электромагнитными силами. Но поскольку другие фундаментальные силы мира до возникновения атомной физики практически не изучались, то с помощью эфира брались объяснить любое явление и любой процесс. Слишком многое возлагалось на эту загадочную материю, что даже реальное вещество не в состоянии было оправдать такие надежды и не разочаровать исследователей. Надо заметить и еще об одной роли эфира в физике. Эфир пытались использовать, чтобы объяснить идеи мирового единства, для связи между частями Вселенной. Эфир в течение столетий служил для многих физиков средством в борьбе против возможности дальнодействия - против той идеи, что сила может передаваться от одного тела к другому через пустоту. Еще Галилей твердо знал, что энергия от одного тела к другому переходит при непосредственном их соприкосновении. На этом принципе основаны законы механики Ньютона. Между тем сила тяготения, оказывалось, действует вроде бы через пустое космическое пространство. Значит, оно не должно быть пустым, значит, его сплошь заполняют некие частицы, передающие силы от одних небесных тел к другим или даже сами своими движениями обеспечивающие действие закона всемирного тяготения. В 19-м веке идея эфира стала на время теоретической основой для активно развивающейся области электромагнетизма. Электричество стали рассматривать, как некую жидкость, которую можно было отождествить лишь с эфиром. При этом всячески подчеркивалось, что электрическая жидкость - одна-единственная. Уже в ту пору крупнейшие физики не могли примириться с возвращением к множеству невесомых жидкостей, хотя в науке вопрос о том, что эфиров несколько, поднимался не раз. К концу 19-го века эфир, можно сказать, стал общепризнан, - о том, что он есть, не спорили. Другой вопрос, что никто не знал, что он себя представляет. Джеймс Клерк Максвелл с помощью механической модели эфира объяснял электромагнитные воздействия. Магнитное поле согласно построениям Максвелла возникает потому, что его создают крошечные эфирные вихри, нечто вроде тоненьких вращающихся цилиндров. Чтобы цилиндры не соприкасались между собой и не мешали друг другу вертеться, между ними были помещены мельчайшие шарики (наподобие смазки). И цилиндры, и шарики были эфирные, но шарики при этом играли роль частиц электричества. Модель была сложной, но демонстрировала и объясняла привычным механическим языком множество характерных электромагнитных явлений. Считается, что Максвелл вывел свои знаменитые уравнения, опираясь на гипотезу об эфире. В дальнейшем, обнаружив, что свет - разновидность электромагнитных волн, Максвелл отождествил "светоносный" и "электрический" эфир, которые одно время существовали параллельно. Пока эфир был теоретическим построением, он мог выдержать любые натиски скептиков. Но, когда его наделили конкретными свойствами, ситуация изменилась; эфир должен был обеспечивать действие закона всемирного тяготения; эфир оказывался средой, по которой идут световые волны; эфир являлся источником проявления электромагнитных сил. Для этого он должен был обладать слишком противоречивыми свойствами. Однако физика конца 19-го века обладала неоспоримым преимуществом, ее утверждения могли быть проверены расчетами и экспериментом. Чтобы объяснить, как такие взаимоисключающие факты уживались в природе одной материи, теорию эфира приходилось все время дополнять, и эти дополнения выглядели все более искусственными. Закат гипотезы существования эфира начался с определения его скорости. В ходе опытов Майкельсона в 1881 году, было выяснено, что скорость эфира равна нулю относительно лабораторной системы отсчета. Однако результаты его опытов многие физики того времени не принимали в расчет. Слишком удобна была гипотеза существования эфира, а другого заменителя для нее не существовало. И большинство физиков того времени не приняло в расчет опыты Майкельсона по определению скорости эфира, хотя восхищалось точностью измерений скорости света в различных средах. Тем не менее, два ученых - Дж. Ф. Фитцджеральд и Г. Лоренц, поняв серьезность эксперимента для гипотезы существования эфира, решили ее "спасти". Они предположили, что предметы, двигающиеся против течения эфира, изменяют свои размеры, сокращаются по мере приближения их к скорости света. Гипотеза была блестящей, формулы - точными, однако цели она не достигла, а предположение, выдвинутое двумя учеными независимо, получило признание лишь после поражения гипотезы существования эфира в битве с теорией относительности. Мировое пространство в теории относительности само по себе служит материальной средой, взаимодействующей с тяготеющими телами, оно само приняло на себя некоторые функции прежнего эфира. Надобность же в эфире как среде, дающей абсолютную систему отсчета, отпала, поскольку получалось, что все системы отсчета относительны. После того, как Максвеллово понятие поля было распространено и на гравитацию, исчезла сама потребность в эфире Френеля, Лесажа и Кельвина для того, чтобы сделать невозможным дальнодействие: гравитационное поле и прочие физические поля приняли на себя обязанность передачи действия. С появлением теории относительности поле стало первичной физической реальностью, а не следствием какой-то другой реальности. Само свойство упругости, столь важное для эфира, оказалось у всех материальных тел связанно с электромагнитным взаимодействием частиц. Говоря иначе, не упругость эфира давала основу электромагнетизму, а электромагнетизм служил основой упругости вообще. Таким образом, эфир придумали, потому что он был нужен. Некая вездесущая материальная среда, как полагал Эйнштейн, все же должна существовать и обладать некими определенными свойствами. Но континуум, наделенный физическими свойствами - это не совсем прежний эфир. У Эйнштейна физическими свойствами наделяется само пространство. Для общей теории относительности этого достаточно, никакая особая материальная среда сверх того в этом пространстве ей не требуется. Однако уже само пространство с новыми для науки физическими свойствами можно было бы, следуя Эйнштейну, назвать эфиром. В современной же физике наравне с теорией относительности используется и квантовая теория поля. Она же, со своей стороны, приходит к наделению вакуума физическими свойствами. Именно вакуума, а не мифического эфира. Академик А.Б. Мигдал пишет по этому поводу: "По существу физики вернулись к понятию эфир, но уже без противоречий. Старое понятие не было взято из архива - оно возникло заново в процессе развития науки".

Физический вакуум как исходный пункт теории

строения Вселенной

Поиск единства естественнонаучного знания предполагает проблему определения исходного пункта теории. Данная проблема является особенно важной для современной физики, где используется единый подход для построения теории взаимодействий. Новейшее развитие физики элементарных частиц привело к возникновению и становлению ряда новых концепций. Важнейшими из них являются следующие, тесно связанные концепции: -- идея геометрической интерпретации взаимодействий и квантов физических полей; -- представление об особых состояниях физического вакуума - поляризованных вакуумных конденсатов. Геометрическая интерпретация частиц и взаимодействий реализована в так называемых калибровочных и суперкалибровочных теориях. В 1972 г. Ф. Клейном была выдвинута "Эрлангенская программа", в которой выражалась идея систематического применения групп симметрий к изучению геометрических объектов. С открытием теории относительности теоретико-групповой подход проникает и в физику. Известно, что в общей теории относительности гравитационное поле рассматривается как проявление искривления четырехмерного пространства-времени, изменения его геометрии вследствие действия всевозможных видов материи. Благодаря работам Г. Вейля, В. Фока, Ф. Лондона впоследствии удалось описать электромагнетизм в терминах калибровочной инвариантности с абелевой группой. В дальнейшем были созданы и неабелевы калибровочные поля, описывающие преобразования симметрии, связанной с вращением в изотопическом пространстве. Далее в 1979 году была создана единая теория электромагнитных и слабых взаимодействий. А сейчас активно разрабатываются теории Великого объединения, объединяющие сильное и слабое электрическое взаимодействие, а также теории Суперобъединения, включающей единую систему сильного и электрослабого, а также гравитационного поля. В теории Суперобъединения делается попытка впервые органично соединить понятия "вещества" и "поля". До появления так называемых суперсимметричных теорий бозоны (кванты полей) и фермионы (частицы вещества) рассматривались как частицы, имеющие различную природу. В калибровочных теориях это различие до сих пор снять не удалось. Калибровочный принцип дает возможность свести действие поля к расслоению пространства, к проявлению его сложной топологии, а все взаимодействия и физические процессы представить как движение по псевдогеодезическим траекториям расслоенного пространства. Это попытка геометризации физики. Бозонные поля являются калибровочными полями, непосредственно и однозначно связанными с определенной группой симметрии теории, а фермионные поля вводятся в теорию достаточно произвольно. В теории Суперобъединения преобразования суперсимметрии способны переводить бозонные состояния в фермионные и наоборот, а сами бозоны и фермионы объединяются в единые мультиплеты. Характерно, что подобная попытка в суперсимметричных теориях приводит к сведению внутренних симметрий к внешним, пространственным симметриям. Дело в том, что преобразования, связывающие бозон с фермионом, примененные повторно, сдвигают частицу в другую точку пространства-времени, т.е. из суперпреобразований получаются преобразования Пуанкаре. С другой стороны локальная симметрия относительно преобразования Пуанкаре приводит к общей теории относительности. Таким образом, обеспечивается связь между локальной суперсимметрией и квантовой теорией гравитации, которые рассматриваются как теории, имеющие общее содержание. В программе Калуци-Клейна использована идея о возможности существования пространства-времени с измерениями, большими четырех. В этих моделях в микромасштабе пространство имеет большую размерность, чем в макромасштабе, поскольку дополнительные размерности оказываются периодическими координатами, период которых исчезающе мал. Расширенное пятимерное пространство-время может рассматриваться как общее ковариантное четырехмерное многообразие с локальной инвариантностью в этом же пространстве-времени. Идея - это геометризация внутренних симметрий. Пятое измерение в этой теории компактифицируется и проявляется в виде электромагнитного поля со своей симметрией, и поэтому оно уже не проявляется как пространственное измерение. Сама по себе последовательная геометризация всех внутренних симметрий была бы невозможна по следующей причине: из метрики могут быть получены только бозонные поля, в то время как окружающее нас вещество состоит из фермионов. Но, как отмечалось выше, в теории Суперобъединения ферми- и бозе-частицы рассматриваются как равноправные, объединенные в единые мультиплеты. И именно в суперсимметричных теориях идея Калуци-Клейна особенно привлекательна. В последнее время основные надежды на построение единой теории всех взаимодействий стали возлагаться на теорию суперструн. В этой теории точечные частицы заменяются суперструнами в многомерном пространстве. С помощью струн стараются охарактеризовать концентрацию поля в некоторой тонкой одномерной области - струне, что не достижимо для других теорий. Характерная особенность струны - наличие многих степеней свободы, чего нет у такого теоретического объекта, как материальная точка. Суперструна, в отличие от струны - объект, дополненный по идее Калуци-Клейна определенным числом степеней свободы, большим четырех. В настоящее время в теориях Суперобъединения рассматриваются суперструны с десятью и более степенями свободы, шесть из которых должны компактифицироваться во внутренние симметрии. Из всего вышесказанного можно заключить, что единая теория, по всей видимости, может быть построена на фундаменте геометризации физики. Это по-новому ставит философскую проблему об отношении материи и пространства-времени, потому что на первый взгляд геометризация физики приводит к отделению понятия пространства-времени от материи. Поэтому представляется важным выявление роли физического вакуума как материального объекта в формировании геометрии известного нам физического мира. В рамках современной физики, физический вакуум - основное, т.е. энергетически низшее, квантовое состояние поля, в котором отсутствуют свободные частицы. При этом отсутствие свободных частиц не означает отсутствия так называемых виртуальных частиц (процессы рождения которых в нем постоянно происходят) и полей (это противоречило бы принципу неопределенности). В современной физике сильных взаимодействий основным объектом теоретических и экспериментальных исследований являются вакуумные конденсаты - области уже перестроенного вакуума с ненулевой энергией. В квантовой хромодинамике это кварк-глюонные конденсаты, которые являются носителями около половины энергии адронов. В адронах состояние вакуумных конденсатов стабилизируется хромодинамическими полями валентных кварков, несущих квантовые числа адронов. Кроме того, существует еще и самополяризованный вакуумный конденсат. Он представляет собой область пространства, в котором отсутствуют кванты фундаментальных полей, но их энергия (полей) не равна нулю. Самополяризованный вакуум - пример того, как расслоенное пространство-время является носителем энергии. Область пространства-времени с самополяризованным вакуумным глюонным конденсатом в эксперименте должна проявляться как мезон с нулевыми квантовыми числами (глюоний). Такая интерпретация мезонов для физики имеет принципиальное значение, так как в этом случае мы имеем дело с частицей чисто "геометрического" происхождения. Глюоний может распадаться на другие частицы - кварки и лептоны, т.е. мы имеем дело с процессом взаимопревращения вакуумных конденсатов в кванты поля или, иначе говоря, с перекачкой энергии из вакуумного конденсата в вещество. Из этого обзора видно, что современные достижения и идеи физики могут привести к неверной философской трактовке соотношения материи и пространства-времени. Мнение, что геометризация физики сводится к геометрии пространства-времени, является ошибочным. В теории Суперобъединения делается попытка всю материю представить в виде конкретного объекта - единого самодействующего суперполя. Сами по себе геометризованные теории в естествознании являются лишь формами описания реальных процессов. Для того чтобы из формальной геометризованной теории суперполя получить теорию реальных процессов, его необходимо проквантовать. Процедура квантования предполагает необходимость макрообстановки. Роль такой макрообстановки берет на себя пространство-время с классической неквантовой геометрией. Чтобы получить его пространство-время, надо вычленить макроскопическую составляющую суперполя, т.е. составляющую, которую с большой точностью можно было бы считать классической. Но разделение суперполя на классическую и квантовую составляющие является операцией приближенной и имеет смысл не всегда. Таким образом, существует граница, за которой стандартные определения пространства-времени и материи теряют смысл. Пространство-время и материя за ней сводятся в общую категорию суперполя, не имеющей операционного определения (пока). Пока нам неизвестно, по каким законам эволюционирует суперполе, потому что у нас нет классических объектов типа пространства-времени, с помощью которых мы могли бы описать проявления суперполя, а другим аппаратом мы пока не обладаем. По всей видимости, многомерное суперполе есть элемент еще более общей целостности, и является результатом компактификации бесконечномерного многообразия. Суперполе, таким образом, может быть лишь элементом другой целостности. Дальнейшая эволюция суперполя как целого приводит к возникновению различных видов материи, различных форм ее движения, существующих в четырехмерном пространстве-времени. Вопрос о вакууме встает в рамках вычлененного целого - суперполя. Исходный вид нашей Вселенной, как считают физики, вакуумный. И при описании истории эволюции нашей Вселенной рассматривается конкретный физический вакуум. Способ существования этого конкретного физического вакуума есть конкретное четырехмерное пространство-время, организующее его. В таком смысле вакуум может быть выражен через категорию содержания, а пространство-время - через категорию формы как внутренней организации вакуума. В этом контексте рассмотрение по отдельности исходного вида материи - вакуума и пространства-времени нашей Вселенной является ошибкой, так как является отрывом формы от содержания. Таким образом, мы подходим к вопросу об исходной абстракции в построении теории физического мира. Ниже приведены основные признаки, которые предъявляются к исходной абстракции. Исходная абстракция должна: -- быть элементом, элементарной структурой объекта; -- быть всеобщей; -- выражать сущность предмета в неразвитом виде; -- содержать в себе в неразвитом виде противоречия предмета; -- быть предельной и непосредственной абстракцией; -- выражать специфику исследуемого предмета; -- совпадать с тем, что было исторически первым в реальном развитии предмета. Далее, рассмотрим все вышеперечисленные свойства исходной абстракции применительно к вакууму. Современные знания о физическом вакууме позволяют сделать вывод о том, что он удовлетворяет всем вышеперечисленным признакам исходной абстракции. Физический вакуум является элементом, частицей любого физического процесса. Причем эта частица несет в себе все элементы всеобщего, пронизывает все стороны исследуемого предмета. В любой физический процесс вакуум входит как часть, причем как конретно-всеобщая часть целостности. В этом смысле он является и частицей и всеобщей характеристикой процесса (удовлетворяет первым двум пунктам определения). Абстракция должна выражать сущность предмета в неразвитом виде. Физический вакуум принимает непосредственно участие в формировании и качественных, и количественных свойств физических объектов. Такие свойства, как спин, заряд, масса, проявляются именно во взаимодействии с определенным вакуумным конденсатом вследствие перестройки физического вакуума в результате спонтанного нарушения симметрии в точках релятивистских фазовых переходов. Говорить о заряде или массе какой-либо элементарной частицы вне связи ее с вполне определенным состоянием физического вакуума не представляется возможным. Следовательно, физический вакуум содержит в себе в неразвитом виде противоречия предмета, а значит и по четвертому пункту отвечает требованиям исходной абстракции. Согласно пятому пункту, физический вакуум, как абстракция, должен выражать специфику явлений. Но согласно вышесказанному, специфика того, или иного физического явления оказывается обусловленной определенным состоянием вакуумного конденсата, входящего как часть в данную конкретную физическую целостность. В современной космологии и астрофизике также сформировалось мнение, что специфика макросвойств Вселенной определяется свойствами физического вакуума. Глобальной гипотезой в космологии является рассмотрение эволюции Вселенной из вакуумного состояния единого суперполя. Это идея квантового рождения Вселенной из физического вакуума. Вакуум здесь является "резервуаром" и излучения, и вещества, и частиц. В теориях касающихся эволюции Вселенной, содержится одна общая черта - стадии экспоненциального раздувания Вселенной, когда весь мир был представлен только таким объектом, как физический вакуум, находящийся в нестабильном состоянии. Инфляционные теории предсказывают наличие основной структуры Вселенной, что является следствием различных типов нарушения симметрий в разных мини-Вселенных. В разных мини-Вселенных могла осуществляться компактификация исходного единого Н-мерного пространства Калуци-Клейна различными способами. Однако условия, необходимые для существования жизни нашего типа, могут осуществляться лишь в четырехмерном пространстве-времени. Таким образом, теория предсказывает множество локальных однородных и изотропных Вселенных с различными размерностями пространства и с различными состояниями вакуума, что еще раз указывает на то, что пространство-время есть лишь способ существования вполне определенного вакуума. Исходная абстракция должна быть предельной и непосредственной, т. е. не опосредоваться другим. Исходная абстракция сама есть отношение. В связи с эти следует заметить, что имеет место "оборачивание" физического вакуума: в своем самодвижении, порождая моменты самого себя, физический вакуум сам же оборачивается частью этого момента. Всевозможные вакуумные конденсаты играют роль макроусловий, по отношению к которым проявляются свойства микрообъектов. Следствием оборачивания вакуума при его самодвижении является физическая неразложимость мира, выражаемая в том, что в основании каждой определенности, каждого физического состояния лежит конкретный вакуумный конденсат. Последним признаком, предъявляемым к исходной абстракции является требование совпадения ее в общем и целом (в онтологическом аспекте) с тем, что было исторически первым в реальном развитие предмета. Иными словами, онтологический аспект сводится к вопросу о вакуумной стадии космологического расширения Вселенной в окрестностях Большого взрыва. Существующая теория предполагает существование такой стадии. В то же время имеется и экспериментальный аспект вопроса, ибо именно на вакуумной стадии происходит целый ряд физических процессов, итогом которых является формирование макросвойств Вселенной в целом. Следствия этих процессов можно наблюдать экспериментально. Можно сказать, что онтологический аспект проблемы находится в стадии конкретного теоретического и экспериментального исследования. Новое понимание сущности физического вакуума Современные физические теории демонстрируют тенденцию перехода от частиц - трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства-времени. Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус. В связи с тем, что физический вакуум претендует на фундаментальный статус, даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений. Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Таким образом, приходим к выводу, что на онтологический статус может претендовать та сущность, которая лишена каких-либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и описание при помощи признаков и мер. Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим. Таким образом, требование фундаментальности и первичности для некой сущности влечет за собой выполнение следующих основных условий:

    -- Не быть составной. -- Иметь наименьшее количество признаков, свойств и характеристик. -- Иметь наибольшую общность для всего многообразия объектов и явлений. -- Быть потенциально всем, а актуально ничем. -- Не иметь никаких мер.
Не быть составной - это означает не содержать в себе ничего, кроме самой себя. Относительно наименьшего количества признаков, свойств и характеристик идеальным должно быть требование - не иметь их совсем. Иметь наибольшую общность для всего многообразия объектов и явлений - это означает не обладать признаками частных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем - это означает оставаться ненаблюдаемым, но в то же время сохранять статус физического объекта. Не иметь никаких мер - это означает быть нульмерным. Эти пять условий чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали, что мир возник из фундаментальной сущности - из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков. Перечисленным выше пяти требованиям не удовлетворяет ни один дискретный объект вещественного мира и ни один квантовый объект поля. Отсюда следует, что этим требованиям может удовлетворять только непрерывная сущность. Поэтому, физический вакуум, если его считать наиболее фундаментальным состоянием материи, должен быть непрерывным (континуальным). Кроме того, распространяя достижения математики на область физики (континуум-гипотеза Кантора), приходим к выводу о несостоятельности множественной структуры физического вакуума. Это значит, что физический вакуум недопустимо отождествлять с эфиром, с квантованным объектом или считать его состоящим из каких бы то ни было дискретных частиц, даже если эти частицы виртуальные. В предлагается рассматривать физический вакуум как антипод вещества. Таким образом, вещество и физический вакуум расцениваются как диалектические противоположности. Целостный мир представлен совместно веществом и физическим вакуумом. Такой подход к этим сущностям соответствует физическому принципу дополнительности Н.Бора. В таких отношениях дополнительности следует рассматривать физический вакуум и вещество. С такого рода физическим объектом - ненаблюдаемым, в котором нельзя указать никаких мер, физика еще не сталкивалась. Предстоит преодолеть этот барьер в физике и признать существование нового вида физической реальности - физического вакуума, обладающего свойством непрерывности. Физический вакуум, наделенный свойством непрерывности, расширяет класс известных физических объектов. Несмотря на то, что физический вакуум является столь парадоксальным объектом, он все увереннее становится предметом изучения физики. В то же время, по причине его непрерывности, традиционный подход, основанный на модельных представлениях, для вакуума неприменим. Поэтому науке предстоит найти принципиально новые методы его изучения. Выяснение природы физического вакуума позволяет по-иному взглянуть на многие физические явления в физике элементарных частиц и в астрофизике. Вся видимая Вселенная и темная материя находятся в ненаблюдаемом, непрерывном физическом вакууме. Физический вакуум генетически предшествует физическим полям и веществу, он порождает их, поэтому вся Вселенная живет по законам физического вакуума, которые науке пока еще не известны.

Заключение.

Современный этап развития физики достиг уже того уровня, когда можно рассматривать теоретический образ физического вакуума в структуре физического знания. Именно физический вакуум наиболее полно удовлетворяет современным представлениям об исходной физической абстракции и, по мнению многих ученых, имеет полное право претендовать на фундаментальный статус. Этот вопрос сейчас активно изучается, и теоретические выводы вполне соответствуют экспериментальным данным, полученным на данный момент в мировых лабораториях. Решение вопроса об исходной абстракции - физическом вакууме крайне важно, так как дает возможность определить отправную точку развития всего физического знания. Это позволяет реализовать метод восхождения от абстрактного к конкретному, что позволит в дальнейшем раскрыть и другие тайны мироздания. 22

Физический вакуум. Пустота – ткань Вселенной.

Аннотация

Физический вакуум является особым видом материи, претендующим на первооснову мира.

Авторы исследуют физический вакуум как целостный физический объект, которому не свойственна множественность и разложимость на части. Такой континуальный физический объект является наиболее фундаментальным видом физической реальности. Свойство континуальности придает ему наибольшую общность и не накладывает ограничений, свойственных множеству других объектов и систем. Континуальный вакуум расширяет класс известных физических объектов. Континуальный вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем и является физическим объектом принципиально недоступным для приборного наблюдения. Приведены 3D-анимации вакуумных эффектов.

1. Научные и философские проблемы вакуума

Физический вакуум стал предметом изучения физики благодаря усилиям известных ученых: П.Дирака, Р.Фейнмана, Дж.Уилера, У.Лэмба, де Ситтера, Г.Казимира, Г.И.Наана,

Я.Б.Зельдовича, А.М.Мостепаненко В.М.Мостепаненко и др. Понимание физического вакуума как не пустого пространства сформировалось в квантовой теории поля. Теоретические исследования указывают на реальность существования в физическом вакууме энергии нулевых колебаний.

Поэтому внимание исследователей привлекают новые физические эффекты и феномены в надежде на то, что они позволят подступиться к океану вакуумной энергии. Достижению реальных результатов, в плане практического использования энергии физического вакуума, мешает непонимание его природы. Загадка природы физического вакуума остается одной из нерешенных проблем фундаментальной физики.

Ученые считают физический вакуум особым состоянием материи, претендующим на первооснову мира. В ряде философских концепций в качестве основы мира рассматривается категория "ничто". Ничто не считается пустотой, а рассматривается как "содержательная пустота".

При этом подразумевается, что "ничто", лишенное конкретных свойств и ограничений, присущих обычным физическим объектам, должно обладать особой общностью и фундаментальностью и,

таким образом, охватывать все многообразие физических объектов и явлений. Таким образом, "ничто" причисляется к ключевым категориям и отвергается принцип ex nigilo nigil fit (из “ничто” ничего не возникает). Философы древнего Востока утверждали, что наиболее фундаментальная реальность мира не может иметь никаких конкретных характеристик и, тем самым, напоминает небытие. Очень похожими признаками современные ученые наделяют физический вакуум. При этом, физический вакуум, будучи относительным небытием и "содержательной пустотой",

является вовсе не самым бедным, а наоборот, самым содержательным, самым "богатым" видом физической реальности. Считается, что физический вакуум, являясь потенциальным бытием,

способен порождать все множество объектов и явлений наблюдаемого мира. Таким образом,

физический вакуум претендует на статус онтологического базиса материи. Несмотря на то, что актуально физический вакуум не состоит из каких-либо частиц или полей, он содержит все потенциально. Поэтому, вследствие наибольшей общности, он может выступать в качестве онтологической основы всего многообразия объектов и явлений в мире. В этом смысле, пустота – самая содержательная и наиболее фундаментальная сущность. Такое понимание физического вакуума заставляет признать реальность существования не только в теориях, но и в Природе и

"ничто" и "нечто". Последнее существует как проявленное бытие – в виде наблюдаемого вещественно-полевого мира, а "ничто" существует как не проявленное бытие – в виде физического вакуума. В этом смысле, не проявленное бытие следует рассматривать как самостоятельную физическую сущность, обладающую наибольшей фундаментальностью.

2. Проявление свойств физического вакуума в экспериментах

Физический вакуум непосредственно не наблюдается, но проявление его свойств регистрируется в экспериментах. В физике известен ряд вакуумных эффектов. К ним относятся:

рождение электронно-позитронной пары, эффект Лэмба-Ризерфорда, эффект Казимира, эффект Унру. В результате поляризации вакуума электрическое поле заряженной частицы отличается от кулоновского. Это приводит к лембовскому сдвигу энергетических уровней и к появлению аномального магнитного момента у частиц. При воздействии фотона на физический вакуум в поле ядра возникают вещественные частицы – электрон и позитрон.

В 1965 году В.Л. Гинзбург и С.И. Сыроватский указали на то, что ускоренный протон нестабилен и должен распадаться на нейтрон, позитрон и нейтрино. В ускоренной системе должен присутствовать тепловой фон различных частиц. Наличие этого фона известно как эффект Унру и связано с различным состоянием вакуума в покоящейся и ускоренной системах отсчета.

Эффект Казимира состоит в возникновении силы, сближающей две пластины, находящиеся в вакууме. Эффект Казимира указывает на возможность извлечения механической энергии из вакуума. На рис.1 схематически показан эффект Казимира в физическом вакууме. 3D-анимация этого процесса показана на рис.1

Рис.1. Проявление силы Казимира в физическом вакууме.

Перечисленные физические эффекты указывают на то, что вакуум не является пустотой, а

выступает в качестве реального физического объекта.

3. Модели физического вакуума

В современной физике предпринимаются попытки представить физический вакуум различными моделями. Многие ученые, начиная с П. Дирака, пытались найти модельные представления, адекватные физическому вакууму. В настоящее время известны: вакуум Дирака,

вакуум Уилера, вакуум де Ситтера, вакуум квантовой теории поля, вакуум Тэрнера-Вилчека и др.

Вакуум Дирака является одной из первых моделей. В ней физический вакуум представлен "морем"

заряженных частиц, находящихся в самом низком энергетическом состоянии. На рис.2 показана модель электронно-позитронного физического вакуума - “море Дирака”. 3D-анимация процессов в море Дирака показана на рис. 2

Рис.2. Модель физического вакуума - “море Дирака”.

Вакуум Уилера состоит из геометрических ячеек планковских размеров. Согласно Уилеру все свойства реального мира и сам реальный мир есть не что иное, как проявление геометрии пространства.

Вакуум де Ситтера представлен совокупностью частиц с целочисленным спином,

находящихся в низшем энергетическом состоянии. В модели де Ситтера физический вакуум обладает свойством, совершенно не присущим любому состоянию вещества. Уравнение состояния такого вакуума, связывающее давление Р и плотность энергии W, имеет необычный вид: .

Причина появления такого экзотического уравнения состояния связана с представлением вакуума многокомпонентной средой, в которой для компенсации сопротивления среды движущимся частицам введено понятие отрицательного давления. На рис.3 условно показана модель вакуума де Ситтера.

Рис.3. Модель физического вакуума де Ситтера.

Вакуум квантовой теории поля содержит в виртуальном состоянии всевозможные частицы.

Эти частицы лишь на короткое время могут появляться в реальном мире и снова переходят в виртуальное состояние. На рис.4 показана модель вакуума квантовой теории поля. 3D-анимация процесса возникновения и исчезновения виртуальных частиц показана на рис 4.

Рис.4. Модель физического вакуума квантовой теории поля.

Вакуум Тэрнера-Вилчека представлен двумя проявлениями – "истинным" вакуумом и

"ложным" вакуумом. То, что в физике считается самым низким энергетическим состоянием, есть

"ложный" вакуум, а истинно нулевое состояние находится ниже по энергетической лестнице. При этом считается, что "ложный" вакуум может переходить в состояние "истинного" вакуума.

Вакуум Герловина представлен несколькими проявлениями. И.Л. Герловин разработал специфический вариант "Единой теории поля". Он назвал свой вариант данной теории – "Теория фундаментального поля". Теория фундаментального поля основана на физико-математической модели "расслоенных пространств". Физический вакуум, согласно теории фундаментального поля представляет собой смесь нескольких видов вакуума в соответствии с видом образующих их

"голых" элементарных частиц. Каждый вид вакуума состоит из не проявляющих себя в

"лабораторном" подпространстве элементарных частиц вакуума, каждая из которых состоит из фермион-антифермионной пары "голых" элементарных частиц. В теории фундаментального поля существует девять видов вакуума. Заметно проявляют себя в физическом мире только два вида вакуума, имеющие наибольшую плотность – протон-антипротонный вакуум и электрон-

позитронный вакуум. По мнению Герловина основные свойства "лабораторного" физического вакуума, например, диэлектрическая проницаемость, определяются свойствами протон-

антипротонного вакуума.

Фитонная модель вакуума предполагает, что невозмущенный вакуум состоит из вложенных друг в друга фитонов, имеющих противоположные спины. По мнению авторов этой модели в среднем такая среда нейтральна, обладает нулевой энергией и нулевым спином.

Физический вакуум как модель квантовой жидкости состоит из фотонных частиц (ф – частиц). В этой модели фотонные частицы расположены в определенном порядке, наподобие кристаллической решетки.

Физический вакуум может быть также представлен как сверхтекучая жидкость, состоящая из фермион-антифермионных пар с ненулевой массой покоя.

Существующие модели физического вакуума весьма противоречивы. Однако большинство предложенных концепций и модельных представлений физического вакуума несостоятельны как в теоретическом, так и в экспериментальном планах. Это относится и к "морю Дирака", и к модели

"расслоенных пространств", и к другим моделям. Причина состоит в том, что в сравнении со всеми другими видами физической реальности физический вакуум имеет ряд парадоксальных свойств, что ставит его в ряд объектов, трудно поддающихся моделированию. Обилие различных модельных представлений вакуума указывает на то, что до сих пор отсутствует модель, адекватная реальному физическому вакууму.

4. Проблемы создания теории физического вакуума

Современная физика стоит на пороге перехода от концептуальных представлений о физическом вакууме к теории физического вакуума. Современные концепции физического вакуума имеют существенный недостаток – они отягощены геометрическим подходом. Проблема,

с одной стороны, состоит в том, чтобы не представлять физический вакуум геометрическим объектом, а с другой стороны, оставляя физический вакуум в статусе физической сущности, не подходить к его изучению с механистических позиций. Создание непротиворечивой теории физического вакуума требует прорывных идей, далеко выходящих за рамки традиционных подходов.

Реальность такова, что в рамках квантовой физики, породившей саму концепцию физического вакуума, теория вакуума не состоялась. Не удалось создать теорию вакуума и в рамках классических представлений. Становится все более очевидным, что "зона жизни" будущей теории физического вакуума должна находиться за пределами квантовой физики и, скорее всего,

ей предшествовать. По всей видимости, квантовая теория должна быть следствием и продолжением теории физического вакуума, коль скоро физическому вакууму отводится роль наиболее фундаментальной физической сущности, роль основы мира. Будущая теория физического вакуума должна удовлетворять принципу соответствия. В таком случае теория физического вакуума должна естественным образом переходить в квантовую теорию. Для построения теории физического вакуума важно получить ответ на вопрос: "какие константы относятся к физическому вакууму?" Если считать, что физический вакуум является онтологической основой мира, то его константы должны выступать в качестве онтологического базиса всех физических констант. Эта проблема исследовалась и были предложены пять первичных суперконстант, от которых происходят фундаментальные физические и космологические константы. Эти константы могут быть отнесены к физическому вакууму. На рис. 5 приведены пять универсальных физических суперконстант и их значения.

Рис. 5. Универсальные физические суперконстанты.

В настоящее время преобладает концепция, в рамках которой считается, что вещество происходит из физического вакуума и свойства вещества проистекают из свойств физического вакуума. Такой концепции придерживались П. Дирак, Ф.Хойл, Я.Б.Зельдович, Э.Трайон и др. Я.Б.

Зельдович исследовал даже более амбициозную задачу – происхождение всей Вселенной из вакуума. Он показал, что твердо установленные законы Природы при этом не нарушаются. Строго выполняются закон сохранения электрического заряда и закон сохранения энергии. Единственный закон, который не выполняется при рождении Вселенной из вакуума – это закон сохранения барионного заряда. Остается непонятным, куда подевалось огромное количество антивещества,

которое в равном количестве с веществом должно было появиться из физического вакуума.

5. Несостоятельность концепции дискретного вакуума

Идеи о том, что какие-либо дискретные частицы могут составлять основу физического вакуума, оказались несостоятельными как в теоретическом плане, так и в практическом приложении. Подобные идеи вступают в противоречие с фундаментальными принципами физики,

Как считал П. Дирак, физический вакуум порождает дискретное вещество. Это значит, что физический вакуум должен генетически предшествовать веществу. Чтобы понять суть физического вакуума, надо оторваться от стереотипного понимания "состоять из…". Мы привыкли, что наша атмосфера - это газ, состоящий из молекул. Долгое время в науке господствовало понятие "эфир". И сейчас можно встретить сторонников концепции светоносного эфира или существования в физическом вакууме газа из гипотетических частиц. Все попытки найти место "эфиру" или иным дискретным объектам в концепциях вакуума или в моделях

вакуума не привели к пониманию сущности физического вакуума. Статус такого вида физической реальности, каким являются дискретные частицы, всегда вторичен. Вновь и вновь будет возникать задача выяснения происхождения дискретных частиц и, соответственно, поиска более фундаментальной сущности.

Можно сделать вывод, что концепции дискретного вакуума принципиально несостоятельны. Весь путь развития физики показал, что никакая частица не может претендовать на фундаментальность и выступать в качестве основы мироздания. Дискретность свойственна веществу. Вещество не имеет первичного статуса, оно происходит из физического вакуума,

поэтому оно принципиально не может выступать в качестве фундаментальной основы мира.

Поэтому физический вакуум не должен иметь признаков, свойственных веществу. Он не должен быть дискретным. Он является антиподом вещества. Его основной признак – континуальность.

Осознание системной организации вещественного мира и материального единства мира,

является величайшим достижением человеческой мысли. К этой системе мира добавилась еще одна подсистема – физический вакуум. Однако существующая система структурных уровней организации мира пока выглядит незавершенной. Она не ориентирована на генетическую взаимосвязь уровней и на естественное развитие. Она не завершена снизу и сверху.

Незавершенность снизу предполагает выяснение величайшей тайны природы - механизма происхождения дискретного вещества из континуального вакуума. Незавершенность сверху требует раскрытия не меньшей тайны - связи физики микромира и физики Вселенной.

Современные физические теории, в попытках найти фундаментальные физические объекты, демонстрируют тенденцию перехода от частиц – трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства. Фундаментальные струны понимаются как 1-мерные объекты. Они бесконечно тонкие, а длина их порядка 10-33 см.

Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус. В тенденции перехода к фундаментальным объектам,

имеющим меньшую размерность, перспективным, на наш взгляд, является подход В. Жвирблиса.

Жвирблис утверждает, что физический вакуум – непрерывная материальная среда. По аналогии с

"нитью Пеано", бесконечно плотно заполняющей двумерное пространство, условно разбитое на квадраты, автор предлагает новую модель физического вакуума – "нить Жвирблиса", бесконечно плотно заполняющую трехмерное пространство, условно разбитое на тетраэдры.

На рис.6 показана модель вакуума Жвирблиса.

Рис. 6. Нить Жвирблиса.

По нашему мнению, это большой прорыв в понимании сущности физического вакуума как фундаментальной основы мира. Жвирблис, в отличие от других ученых, в качестве модели физического вакуума рассматривает не многокомпонентную среду, а одномерный математический объект – "нить Жвирблиса". В отличие от всех известных моделей, в его модели дискретности и множественности отведено самое минимальное место – используется одномерный математический объект. В пределе понимается, что при сверхплотном заполнении пространства среда становится непрерывной.

На рисунке 7 показана тенденция перехода к объектам, имеющим меньшую размерность. Мы считаем, что в этой тенденции поиска наиболее фундаментального объекта недоставало решающего шага – перехода к нуль-мерному объекту. Эта проблема исследовалась и было предложено, что физический вакуум, в отличие от традиционного понимания, представлен как нуль-мерный физический объект.

Рис.7. Тенденция в физических теориях: переход от трехмерных объектов к нуль-мерному объекту.

Фундаментальные объекты в теории суперструн имеют планковские размеры. Тем не менее, пока нет убедительных доводов, что "планкеоны" или "суперструны" составляют основу мира. Нет оснований считать, что не существует объектов, имеющих размеры меньше планковских. В этом контексте следует заметить, что планковские естественные единицы не являются единственными. В физике известны константы Джорджа Стони, образованные комбинацией констант G, c, e. Они имеют меньшие значения по сравнению с планковскими

единицами, и вполне могут выступать конкурентами планковским единицам. Единицы Планка и единицы Стони исследовались и были предложены новые системы естественных единиц,

относящиеся к глубинным уровням организации материи в микромире ниже планковского уровня.

Новые системы естественных единиц образованы гравитационной константой G, зарядом электрона e, скоростью света c, постоянной Ридберга R∞, постоянной Хаббла H0.

На рис.8, для сравнения, приведены значения планковских естественных единиц, естественных единиц Джорджа Стони и новых естественных единиц.

Рис. 8. Естественные единицы М. Планка, естественные единицы Дж. Стони и новые естественные единицы.

Подход, в рамках которого считается, что физический вакуум существует в виде непрерывной среды является многообещающим. При таком подходе к физическому вакууму находит объяснение его ненаблюдаемость. Не следует связывать ненаблюдаемость физического вакуума с несовершенством приборов и способов исследования. Физический вакуум – принципиально ненаблюдаемая среда – это прямое следствие его непрерывности. Наблюдаемыми являются только вторичные проявления физического вакуума – поле и вещество. Для континуального физического объекта нельзя указать никаких других свойств, кроме свойства непрерывности. К континуальному объекту неприменимы никакие меры, это антипод всему дискретному.

Физика, на примере проблемы физического вакуума, сталкивается с коллизией непрерывности и дискретности, с которой столкнулась математика в теории множеств. Попытка разрешить противоречие непрерывности и дискретности в математике была предпринята Кантором (континуум-гипотеза Кантора). Эту гипотезу не удалось доказать ни ее автору, ни другим выдающимся математикам. В настоящее время причина неудач выяснена. В соответствии с выводами П.Коэна: сама идея множественной, дискретной структуры континуума является ложной . Распространяя этот результат на континуальный вакуум можно утверждать: "идея множественной или дискретной структуры физического вакуума является ложной".

С учетом парадоксальных свойств и признаков можно констатировать, что континуальный вакуум является новым видом физической реальности, с которым физика еще не сталкивалась.

6. Критерии фундаментальности

В связи с тем, что физический вакуум претендует на фундаментальный статус, более того,

даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений. Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Так, например, ножницы – универсальное понятие. Добавление какого-либо признака сужает круг охватываемых этим понятием объектов (ножницы бытовые,

слесарные, кровельные, дисковые, гильотинные, портновские и т.п.). Таким образом, приходим к выводу, что на онтологический статус может претендовать такая сущность, которая лишена каких-

либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и наделение моделируемого объекта конкретными признаками и мерами. Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим.

Таким образом, требование фундаментальности и первичности для физического объекта влечет за собой выполнение следующих основных условий:

1. Не быть составным.

2. Иметь наименьшее количество признаков, свойств и характеристик.

3. Иметь наибольшую общность для всего многообразия объектов и явлений.

4. Быть потенциально всем, а актуально ничем.

5. Не иметь никаких мер.

Не быть составным – это означает не содержать в себе ничего, кроме самого себя, т.е. быть целостным объектом. Относительно второго условия идеальным должно быть требование - совсем не иметь признаков. Иметь наибольшую общность для всего многообразия объектов и явлений – это означает не обладать признаками частных, конкретных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем – это означает оставаться ненаблюдаемым и одновременно быть основой всему сущему. Не иметь никаких мер – это означает быть континуальным объектом.

Эти пять условий первичности и фундаментальности чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали,

что мир возник из фундаментальной сущности – из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА «СРЕДСТВА СВЯЗИ И ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ»

по Основам физике твёрдого тела

на тему: Проблема физического вакуума

Выполнил: Панков Д. Ю.

Проверила: преподаватель Калистратова Л. Ф.

Введение

Эволюция взглядов на проблему физического вакуума

Физический вакуум как исходный пункт теории строения Вселенной

Новое понимание сущности физического вакуума

Заключение

Список литературы

Введение

Понятие вакуум в истории философии и науки обычно употреблялось для обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям. Последние рассматривались как чистые вкрапления в вакуум. Такой взгляд на природу вакуума был свойственен древнегреческой науке, основоположниками которой являлись Левкипп, Демокрит, Аристотель. Атомы и пустота - две объективные реальности, фигурировавшие в атомистике Демокрита. Пустота так же объективна, как и атомы. Только наличие пустоты делает возможным движение. Эта концепция вакуума получила развитие в работах Эпикура, Лукреция, Бруно, Галилея и др. Наиболее развернутую аргументацию в пользу вакуума дал Локк.

Концепция вакуума была наиболее полно раскрыта с естественнонаучной стороны в учении Ньютона об "абсолютном пространстве", понимаемом как пустое вместилище для материальных объектов. Но уже в 17 веке все громче раздаются голоса философов и физиков, отрицающих существование вакуума, так как неразрешимым оказался вопрос о природе взаимодействия между атомами. По Демокриту, атомы взаимодействуют друг с другом только путем непосредственного механического контакта. Но это вело к внутренней противоречивости теории, так как устойчивый характер тел мог быть объяснен только непрерывностью материи, т.е. отрицанием существования пустоты, исходного пункта теории. Попытка Галилея обойти это противоречие, рассматривая малые пустоты внутри тел как связующие силы, не могла привести к успеху в рамках узкомеханистической трактовки взаимодействия. С развитием науки, в дальнейшем эти рамки были сломаны, - был предложен тезис о том, что взаимодействие может передаваться не только механическим путем, но и электрическими, магнитными и гравитационными силами. Однако это не решило проблемы вакуума. Боролись две концепции взаимодействия: "дальнодействия" и "близкодействия". Первая основывалась на возможности бесконечно большой скорости распространения сил через пустоту. Вторая требовала наличия некоторой промежуточной, непрерывной среды. Первая признавала вакуум, вторая его отрицала. Первая метафизически противопоставляла вещество и "пустое" пространство, вносила в науку элементы мистики и иррационализма, вторая же исходила из того, что материя не может действовать там, где ее нет. Опровергая существование вакуума, Декарт писал: "...что касается пустого пространства в том смысле, в каком философы понимают это слово, то есть такого пространства, где нет никакой субстанции, то очевидно, что в мире нет пространства, которое было бы таковым, потому что протяжение пространства как внутреннего места не отличается от протяжения тела".

Отрицание вакуума в работах Декарта и Гюйгенса послужило отправной точкой для создания физической гипотезы эфира, продержавшейся в науке до начала 20-го века. Развитие в конце 19-го века теории о поле и появление в начале 20-го века теории относительности окончательно "похоронило" теорию "дальнодействия". Была разрушена и теория эфира, так как было отвергнуто существование абсолютной системы отсчета. Но крушение гипотезы существования эфира не означало возврата к прежним представлениям о наличии пустого пространства: сохранились и получили дальнейшее развитие представления о физических полях. Проблема, поставленная еще в античные времена, решена практически современной наукой. Вакуумной пустоты не существует. Наличие "чистой" протяженности, "пустого" пространства противоречит основным положениям естествознания. Пространство не есть особая сущность, обладающая бытием наряду с материей. Как материя не может быть лишена своих пространственных свойств, так и пространство не может быть "пустым", оторванным от материи. Этот вывод находит свое подтверждение и в квантовой теории поля. Открытие У.Лэмбом сдвига уровней атомных электронов и дальнейшие работы в этом направлении привели к пониманию природы вакуума как особого состояния поля. Это состояние характеризуется наименьшей энергией поля, наличием нулевых колебаний поля. Нулевые колебания поля проявляются в виде экспериментально обнаруженных эффектов. Следовательно, вакуум в квантовой электродинамике обладает рядом физических свойств и не может рассматриваться как метафизическая пустота. Более того, свойства вакуума определяют свойства окружающей нас материи, а сам по себе физический вакуум является исходной абстракцией для физики.

Эволюция взглядов на проблему физического вакуума

С древнейших времен, со времени появления физики и философии как научной дисциплины умы ученых беспокоила одна и та же проблема - что есть вакуум. И, несмотря на то, что к настоящему моменту многие загадки строения Вселенной решены, до сих пор остается нерешенной загадка вакуума - что он из себя представляет. В переводе с латыни вакуум - пустота, но стоит ли называть пустотой то, что таковой не является?

Греческая наука первой ввела четыре первоэлемента, образующих мир - вода, земля, огонь и воздух. Каждая вещь на свете для них была сложена из частиц одной или сразу нескольких этих стихий. Дальше перед философами возник вопрос: может ли существовать место, где нет ничего - ни земли, ни воды, ни воздуха, ни огня? Существует ли подлинная пустота?

Левкипп и Демокрит, жившие в 5 в. до н. э. пришли к выводу: все в мире состоит из атомов и разделяющей их пустоты. Пустота по мнению Демокрита позволяла двигаться, развиваться и совершать любые изменения, поскольку атомы неделимы. Таким образом, Демокрит первым отвел вакууму ту роль, которую он играет в современной науке. Он же поставил проблему сущего и небытия. Признавая сущее (атомы) и небытие (вакуум), он говорил, что и то, и другое является материей и причиной существования вещей на равных правах. Пустота, по мнению Демокрита также являлась материей, причем разница в весе вещей определялась разным количеством пустоты, содержащейся в них.

Аристотель, считал, что пустоту можно представить, но она не существует. В противном случае считал он, становится возможной бесконечная скорость, а ее в принципе существовать не может. Следовательно, пустоты не существует. Кроме того, в пустоте не было бы никаких различий: ни верха, ни низа, ни правого, ни левого - все в ней находилось бы в полном покое. В пустоте все направления окажутся равноправными, она никак не влияет на помещенное в нее тело. Таким образом, движение тела в ней не определяется ничем, а этого быть не может. Далее понятие вакуума было заменено понятием эфира. Эфиром является некая божественная субстанция - нематериальная, неделимая, вечная, свободная от присущих элементам природы противоположностей и поэтому качественно неизменная. Эфир - всеобъемлющий и поддерживающий элемент мироздания.

Как видно, древняя научная мысль отличалась определенным примитивизмом, однако она обладала и некоторыми преимуществами. В частности, ученые древности не были скованы рамками экспериментов и расчетов, поэтому они стремились к пониманию мира в большей степени, чем к его преобразованию. Но во взглядах Аристотеля уже появляются первые попытки понять строение материи, которая нас окружает. Он определяет некоторые ее свойства, исходя из качественных предположений.

Теоретическая борьба с пустотой продолжалась и в средние века. "...Я утвердился во мнении, - подвел итог своим опытам Блэз Паскаль, - которое всегда разделял, а именно, что пустота не есть что-либо невозможное, что природа вовсе не избегает пустоты с такой боязнью, как это многим кажется". Опровергнув опыты Торричелли с получением пустоты "искусственно", он определил место пустоты в механике. Появление барометра, а затем и воздушного насоса является практическим результатом этого. Первым же, кто определил место пустоты в классической механике, был Ньютон. По Ньютону, небесные тела погружены в абсолютную пустоту. И она всюду одинакова, в ней отсутствуют различия. Фактически Ньютон для обоснования своей механики привлек то, что Аристотелю не позволяло признать возможность пустоты. Таким образом, существование пустоты было уже доказано экспериментально, и даже положено в основу самой влиятельной в то время физико-философской системы. Но, несмотря на это, борьба с этой идеей разгорелась с новой силой. И одним из тех, кто решительно не был согласен с идеей существования пустоты, был Рене Декарт.

Предсказав открытие пустоты, он заявил, что это не настоящая пустота: " Мы считаем сосуд пустым, когда в нем нет воды, но на самом деле в таком сосуде остается воздух. Если из "пустого" сосуда убрать и воздух, в нем опять что-то должно остаться, но это "что-то" мы просто не почувствуем...". Декарт пытался оттолкнуться от понятия пустоты, введенного ранее, дал ей имя эфир, которое использовалось еще древнегреческими философами. Он понимал, что называть вакуум пустотой неправильно, ибо он не является пустотой, в прямом смысле этого слова. Пустоты абсолютной, по Декарту, не может быть, поскольку протяженность есть атрибут, непременный признак и даже сущность материи; а раз так, то всюду где есть протяженность - то есть само пространство - должна существовать и материя. Именно поэтому он упорно отталкивался от понятия пустоты.

Материя бывает, как утверждал Декарт, трех родов, состоит из трех видов частиц: земли, воздуха и огня. Частицы эти "разной тонкости" и двигаются по-разному. Поскольку абсолютная пустота невозможна, то всякое движение любых частиц приводит на их место другие, и вся материя находится в непрерывном движении. Из этого Декарт делает вывод, что все физические тела - результат вихревых движений в несжимаемом и нерасширяющемся эфире. Эта гипотеза, красивая и эффектная, оказала огромное влияние на развитие науки. Идея представить тела (и частицы), как некие вихри, сгущения в более тонкой материальной среде оказалась очень жизнеспособной. А то, что элементарные частицы следует рассматривать как возбуждения вакуума, - признанная научная истина. Но, тем не менее, такая модификация эфира, ушла с физической сцены, ибо была слишком "философской", и пыталась объяснить сразу все в мире, наметив строение мироздания.

Отношение к эфиру Ньютона заслуживает отдельного упоминания. Ньютон то утверждал, что эфир не существует, то наоборот боролся за признание этого понятия. Эфир был незримой сущностью, одной из тех сущностей, против которых категорически и весьма последовательно возражал великий английский физик. Он исследовал не виды сил и их свойства, а их величины и математические соотношения между ними. Его всегда интересовало то, что можно определить при опыте и измерить числом. Знаменитое "Гипотез не измышляю!" означало решительный отказ от домыслов, не подтвержденных объективными опытами. И в отношении к эфиру Ньютон не проявлял такой последовательности. Происходило это вот почему. Ньютон не только верил в бога, - вездесущего и всемогущего, но и не мог представить его себе иначе, чем в виде особой субстанции, пронизывающей все пространство и регулирующей все силы взаимодействия между телами, а тем самым - все движения тел, все, что происходит в мире. То есть бог - эфир. С точки зрения церкви - это ересь, а с точки зрения принципиальной позиции Ньютона - домысел. Поэтому Ньютон не смеет писать об этом убеждении, а только изредка высказывает его в беседах. Но авторитет Ньютона прибавил значимости понятию эфира. Современники и потомки обратили больше внимания на высказывания физика, которые утверждали о существовании эфира, чем на те, что отрицали его существование.

Под понятием "эфир" в ту пору подводилось все, что, как мы знаем теперь, вызывается гравитационными и электромагнитными силами. Но поскольку другие фундаментальные силы мира до возникновения атомной физики практически не изучались, то с помощью эфира брались объяснить любое явление и любой процесс. Слишком многое возлагалось на эту загадочную материю, что даже реальное вещество не в состоянии было оправдать такие надежды и не разочаровать исследователей.

Надо заметить и еще об одной роли эфира в физике. Эфир пытались использовать, чтобы объяснить идеи мирового единства, для связи между частями Вселенной. Эфир в течение столетий служил для многих физиков средством в борьбе против возможности дальнодействия - против той идеи, что сила может передаваться от одного тела к другому через пустоту. Еще Галилей твердо знал, что энергия от одного тела к другому переходит при непосредственном их соприкосновении. На этом принципе основаны законы механики Ньютона. Между тем сила тяготения, оказывалось, действует вроде бы через пустое космическое пространство. Значит, оно не должно быть пустым, значит, его сплошь заполняют некие частицы, передающие силы от одних небесных тел к другим или даже сами своими движениями обеспечивающие действие закона всемирного тяготения.

В 19-м веке идея эфира стала на время теоретической основой для активно развивающейся области электромагнетизма. Электричество стали рассматривать, как некую жидкость, которую можно было отождествить лишь с эфиром. При этом всячески подчеркивалось, что электрическая жидкость - одна-единственная. Уже в ту пору крупнейшие физики не могли примириться с возвращением к множеству невесомых жидкостей, хотя в науке вопрос о том, что эфиров несколько, поднимался не раз. К концу 19-го века эфир, можно сказать, стал общепризнан, - о том, что он есть, не спорили. Другой вопрос, что никто не знал, что он себя представляет. Джеймс Клерк Максвелл с помощью механической модели эфира объяснял электромагнитные воздействия. Магнитное поле согласно построениям Максвелла возникает потому, что его создают крошечные эфирные вихри, нечто вроде тоненьких вращающихся цилиндров. Чтобы цилиндры не соприкасались между собой и не мешали друг другу вертеться, между ними были помещены мельчайшие шарики (наподобие смазки). И цилиндры, и шарики были эфирные, но шарики при этом играли роль частиц электричества. Модель была сложной, но демонстрировала и объясняла привычным механическим языком множество характерных электромагнитных явлений. Считается, что Максвелл вывел свои знаменитые уравнения, опираясь на гипотезу об эфире. В дальнейшем, обнаружив, что свет - разновидность электромагнитных волн, Максвелл отождествил "светоносный" и "электрический" эфир, которые одно время существовали параллельно. Пока эфир был теоретическим построением, он мог выдержать любые натиски скептиков. Но, когда его наделили конкретными свойствами, ситуация изменилась; эфир должен был обеспечивать действие закона всемирного тяготения; эфир оказывался средой, по которой идут световые волны; эфир являлся источником проявления электромагнитных сил. Для этого он должен был обладать слишком противоречивыми свойствами. Однако физика конца 19-го века обладала неоспоримым преимуществом, ее утверждения могли быть проверены расчетами и экспериментом. Чтобы объяснить, как такие взаимоисключающие факты уживались в природе одной материи, теорию эфира приходилось все время дополнять, и эти дополнения выглядели все более искусственными.

Закат гипотезы существования эфира начался с определения его скорости. В ходе опытов Майкельсона в 1881 году, было выяснено, что скорость эфира равна нулю относительно лабораторной системы отсчета. Однако результаты его опытов многие физики того времени не принимали в расчет. Слишком удобна была гипотеза существования эфира, а другого заменителя для нее не существовало. И большинство физиков того времени не приняло в расчет опыты Майкельсона по определению скорости эфира, хотя восхищалось точностью измерений скорости света в различных средах. Тем не менее, два ученых - Дж. Ф. Фитцджеральд и Г. Лоренц, поняв серьезность эксперимента для гипотезы существования эфира, решили ее "спасти". Они предположили, что предметы, двигающиеся против течения эфира, изменяют свои размеры, сокращаются по мере приближения их к скорости света. Гипотеза была блестящей, формулы - точными, однако цели она не достигла, а предположение, выдвинутое двумя учеными независимо, получило признание лишь после поражения гипотезы существования эфира в битве с теорией относительности.

Мировое пространство в теории относительности само по себе служит материальной средой, взаимодействующей с тяготеющими телами, оно само приняло на себя некоторые функции прежнего эфира. Надобность же в эфире как среде, дающей абсолютную систему отсчета, отпала, поскольку получалось, что все системы отсчета относительны.

После того, как Максвеллово понятие поля было распространено и на гравитацию, исчезла сама потребность в эфире Френеля, Лесажа и Кельвина для того, чтобы сделать невозможным дальнодействие: гравитационное поле и прочие физические поля приняли на себя обязанность передачи действия. С появлением теории относительности поле стало первичной физической реальностью, а не следствием какой-то другой реальности.

Само свойство упругости, столь важное для эфира, оказалось у всех материальных тел связанно с электромагнитным взаимодействием частиц. Говоря иначе, не упругость эфира давала основу электромагнетизму, а электромагнетизм служил основой упругости вообще.

Таким образом, эфир придумали, потому что он был нужен. Некая вездесущая материальная среда, как полагал Эйнштейн, все же должна существовать и обладать некими определенными свойствами. Но континуум, наделенный физическими свойствами - это не совсем прежний эфир. У Эйнштейна физическими свойствами наделяется само пространство.

Для общей теории относительности этого достаточно, никакая особая материальная среда сверх того в этом пространстве ей не требуется. Однако уже само пространство с новыми для науки физическими свойствами можно было бы, следуя Эйнштейну, назвать эфиром.

В современной же физике наравне с теорией относительности используется и квантовая теория поля. Она же, со своей стороны, приходит к наделению вакуума физическими свойствами. Именно вакуума, а не мифического эфира.

Академик А.Б. Мигдал пишет по этому поводу: "По существу физики вернулись к понятию эфир, но уже без противоречий. Старое понятии не было взято из архива - оно возникло заново в процессе развития науки".

физический вакуум вселенная эфир

Физический вакуум как исходный пункт теории строения Вселенной

Поиск единства естественнонаучного знания предполагает проблему определения исходного пункта теории. Данная проблема является особенно важной для современной физики, где используется единый подход для построения теории взаимодействий.

Новейшее развитие физики элементарных частиц привело к возникновению и становлению ряда новых концепций. Важнейшими из них являются следующие, тесно связанные концепции:

Идея геометрической интерпретации взаимодействий и квантов физических полей;

Представление об особых состояниях физического вакуума - поляризованных вакуумных конденсатов.

Геометрическая интерпретация частиц и взаимодействий реализована в так называемых калибровочных и суперкалибровочных теориях. В 1972 г. Ф. Клейном была выдвинута "Эрлангенская программа", в которой выражалась идея систематического применения групп симметрий к изучению геометрических объектов. С открытием теории относительности теоретико-групповой подход проникает и в физику. Известно, что в общей теории относительности гравитационное поле рассматривается как проявление искривления четырехмерного пространства-времени, изменения его геометрии вследствие действия всевозможных видов материи. Благодаря работам Г. Вейля, В. Фока, Ф. Лондона впоследствии удалось описать электромагнетизм в терминах калибровочной инвариантности с абелевой группой. В дальнейшем были созданы и неабелевы калибровочные поля, описывающие преобразования симметрии, связанной с вращением в изотопическом пространстве. Далее в 1979 году была создана единая теория электромагнитных и слабых взаимодействий. А сейчас активно разрабатываются теории Великого объединения, объединяющие сильное и слабое электрическое взаимодействие, а также теории Суперобъединения, включающей единую систему сильного и электрослабого, а также гравитационного поля.

В теории Суперобъединения делается попытка впервые органично соединить понятия "вещества" и "поля". До появления так называемых суперсимметричных теорий бозоны (кванты полей) и фермионы (частицы вещества) рассматривались как частицы, имеющие различную природу. В калибровочных теориях это различие до сих пор снять не удалось. Калибровочный принцип дает возможность свести действие поля к расслоению пространства, к проявлению его сложной топологии, а все взаимодействия и физические процессы представить как движение по псевдогеодезическим траекториям расслоенного пространства. Это попытка геометризации физики. Бозонные поля являются калибровочными полями, непосредственно и однозначно связанными с определенной группой симметрии теории, а фермионные поля вводятся в теорию достаточно произвольно. В теории Суперобъединения преобразования суперсимметрии способны переводить бозонные состояния в фермионные и наоборот, а сами бозоны и фермионы объединяются в единые мультиплеты. Характерно, что подобная попытка в суперсимметричных теориях приводит к сведению внутренних симметрий к внешним, пространственным симметриям. Дело в том, что преобразования, связывающие бозон с фермионом, примененные повторно, сдвигают частицу в другую точку пространства-времени, т.е. из суперпреобразований получаются преобразования Пуанкаре. С другой стороны локальная симметрия относительно преобразования Пуанкаре приводит к общей теории относительности. Таким образом, обеспечивается связь между локальной суперсимметрией и квантовой теорией гравитации, которые рассматриваются как теории, имеющие общее содержание.

В программе Калуци-Клейна использована идея о возможности существования пространства-времени с измерениями, большими четырех. В этих моделях в микромасштабе пространство имеет большую размерность, чем в макромасштабе, поскольку дополнительные размерности оказываются периодическими координатами, период которых исчезающе мал. Расширенное пятимерное пространство-время может рассматриваться как общее ковариантное четырехмерное многообразие с локальной инвариантностью в этом же пространстве-времени. Идея - это геометризация внутренних симметрий. Пятое измерение в этой теории компактифицируется и проявляется в виде электромагнитного поля со своей симметрией, и поэтому оно уже не проявляется как пространственное измерение. Сама по себе последовательная геометризация всех внутренних симметрий была бы невозможна по следующей причине: из метрики могут быть получены только бозонные поля, в то время как окружающее нас вещество состоит из фермионов. Но, как отмечалось выше, в теории Суперобъединения ферми- и бозе-частицы рассматриваются как равноправные, объединенные в единые мультиплеты. И именно в суперсимметричных теориях идея Калуци-Клейна особенно привлекательна.

В последнее время основные надежды на построение единой теории всех взаимодействий стали возлагаться на теорию суперструн. В этой теории точечные частицы заменяются суперструнами в многомерном пространстве. С помощью струн стараются охарактеризовать концентрацию поля в некоторой тонкой одномерной области - струне, что не достижимо для других теорий. Характерная особенность струны - наличие многих степеней свободы, чего нет у такого теоретического объекта, как материальная точка. Суперструна, в отличие от струны - объект, дополненный по идее Калуци-Клейна определенным числом степеней свободы, большим четырех. В настоящее время в теориях Суперобъединения рассматриваются суперструны с десятью и более степенями свободы, шесть из которых должны компактифицироваться во внутренние симметрии.

Из всего вышесказанного можно заключить, что единая теория, по всей видимости, может быть построена на фундаменте геометризации физики. Это по-новому ставит философскую проблему об отношении материи и пространства-времени, потому что на первый взгляд геометризация физики приводит к отделению понятия пространства-времени от материи. Поэтому представляется важным выявление роли физического вакуума как материального объекта в формировании геометрии известного нам физического мира.

В рамках современной физики, физический вакуум - основное, т.е. энергетически низшее, квантовое состояние поля, в котором отсутствуют свободные частицы. При этом отсутствие свободных частиц не означает отсутствия так называемых виртуальных частиц (процессы рождения которых в нем постоянно происходят) и полей (это противоречило бы принципу неопределенности). В современной физике сильных взаимодействий основным объектом теоретических и экспериментальных исследований являются вакуумные конденсаты - области уже перестроенного вакуума с ненулевой энергией. В квантовой хромодинамике это кварк-глюонные конденсаты, которые являются носителями около половины энергии адронов. В адронах состояние вакуумных конденсатов стабилизируется хромодинамическими полями валентных кварков, несущих квантовые числа адронов. Кроме того, существует еще и самополяризованный вакуумный конденсат. Он представляет собой область пространства, в котором отсутствуют кванты фундаментальных полей, но их энергия (полей) не равна нулю. Самополяризованный вакуум - пример того, как расслоенное пространство-время является носителем энергии. Область пространства-времени с самополяризованным вакуумным глюонным конденсатом в эксперименте должна проявляться как мезон с нулевыми квантовыми числами (глюоний). Такая интерпретация мезонов для физики имеет принципиальное значение, так как в этом случае мы имеем дело с частицей чисто "геометрического" происхождения. Глюоний может распадаться на другие частицы - кварки и лептоны, т.е. мы имеем дело с процессом взаимопревращения вакуумных конденсатов в кванты поля или, иначе говоря, с перекачкой энергии из вакуумного конденсата в вещество.

Из этого обзора видно, что современные достижения и идеи физики могут привести к неверной философской трактовке соотношения материи и пространства-времени. Мнение, что геометризация физики сводится к геометрии пространства-времени, является ошибочным. В теории Суперобъединения делается попытка всю материю представить в виде конкретного объекта - единого самодействующего суперполя. Сами по себе геометризованные теории в естествознании являются лишь формами описания реальных процессов. Для того чтобы из формальной геометризованной теории суперполя получить теорию реальных процессов, его необходимо проквантовать. Процедура квантования предполагает необходимость макрообстановки. Роль такой макрообстановки берет на себя пространство-время с классической неквантовой геометрией. Чтобы получить его пространство-время, надо вычленить макроскопическую составляющую суперполя, т.е. составляющую, которую с большой точностью можно было бы считать классической. Но разделение суперполя на классическую и квантовую составляющие является операцией приближенной и имеет смысл не всегда. Таким образом, существует граница, за которой стандартные определения пространства-времени и материи теряют смысл. Пространство-время и материя за ней сводятся в общую категорию суперполя, не имеющей операционного определения (пока). Пока нам неизвестно, по каким законам эволюционирует суперполе, потому что у нас нет классических объектов типа пространства-времени, с помощью которых мы могли бы описать проявления суперполя, а другим аппаратом мы пока не обладаем. По всей видимости, многомерное суперполе есть элемент еще более общей целостности, и является результатом компактификации бесконечномерного многообразия. Суперполе, таким образом, может быть лишь элементом другой целостности. Дальнейшая эволюция суперполя как целого приводит к возникновению различных видов материи, различных форм ее движения, существующих в четырехмерном пространстве-времени.

Вопрос о вакууме встает в рамках вычлененного целого - суперполя. Исходный вид нашей Вселенной, как считают физики, вакуумный. И при описании истории эволюции нашей Вселенной рассматривается конкретный физический вакуум. Способ существования этого конкретного физического вакуума есть конкретное четырехмерное пространство-время, организующее его. В таком смысле вакуум может быть выражен через категорию содержания, а пространство-время - через категорию формы как внутренней организации вакуума. В этом контексте рассмотрение по отдельности исходного вида материи - вакуума и пространства-времени нашей Вселенной является ошибкой, так как является отрывом формы от содержания. Таким образом, мы подходим к вопросу об исходной абстракции в построении теории физического мира. Ниже приведены основные признаки, которые предъявляются к исходной абстракции. Исходная абстракция должна:

Быть элементом, элементарной структурой объекта;

Быть всеобщей;

Выражать сущность предмета в неразвитом виде;

Быть предельной и непосредственной абстракцией;

Выражать специфику исследуемого предмета;

Совпадать с тем, что было исторически первым в реальном развитии предмета.

Современные знания о физическом вакууме позволяют сделать вывод о том, что он удовлетворяет всем вышеперечисленным признакам исходной абстракции. Физический вакуум является элементом, частицей любого физического процесса. Причем эта частица несет в себе все элементы всеобщего, пронизывает все стороны исследуемого предмета. В любой физический процесс вакуум входит как часть, причем как конретно-всеобщая часть целостности. В этом смысле он является и частицей и всеобщей характеристикой процесса (удовлетворяет первым двум пунктам определения).

Абстракция должна выражать сущность предмета в неразвитом виде. Физический вакуум принимает непосредственно участие в формировании и качественных, и количественных свойств физических объектов. Такие свойства, как спин, заряд, масса, проявляются именно во взаимодействии с определенным вакуумным конденсатом вследствие перестройки физического вакуума в результате спонтанного нарушения симметрии в точках релятивистских фазовых переходов.

Говорить о заряде или массе какой-либо элементарной частицы вне связи ее с вполне определенным состоянием физического вакуума не представляется возможным. Следовательно, физический вакуум содержит в себе в неразвитом виде противоречия предмета, а значит и по четвертому пункту отвечает требованиям исходной абстракции.

Согласно пятому пункту, физический вакуум, как абстракция, должен выражать специфику явлений. Но согласно вышесказанному, специфика того, или иного физического явления оказывается обусловленной определенным состоянием вакуумного конденсата, входящего как часть в данную конкретную физическую целостность. В современной космологии и астрофизике также сформировалось мнение, что специфика макросвойств Вселенной определяется свойствами физического вакуума. Глобальной гипотезой в космологии является рассмотрение эволюции Вселенной из вакуумного состояния единого суперполя. Это идея квантового рождения Вселенной из физического вакуума. Вакуум здесь является "резервуаром" и излучения, и вещества, и частиц.

В теориях касающихся эволюции Вселенной, содержится одна общая черта - стадии экспоненциального раздувания Вселенной, когда весь мир был представлен только таким объектом, как физический вакуум, находящийся в нестабильном состоянии. Инфляционные теории предсказывают наличие основной структуры Вселенной, что является следствием различных типов нарушения симметрий в разных мини-Вселенных. В разных мини-Вселенных могла осуществляться компактификация исходного единого Н-мерного пространства Калуци-Клейна различными способами.

Однако условия, необходимые для существования жизни нашего типа, могут осуществляться лишь в четырехмерном пространстве-времени. Таким образом, теория предсказывает множество локальных однородных и изотропных Вселенных с различными размерностями пространства и с различными состояниями вакуума, что еще раз указывает на то, что пространство-время есть лишь способ существования вполне определенного вакуума.

Исходная абстракция должна быть предельной и непосредственной, т. е. не опосредоваться другим. Исходная абстракция сама есть отношение. В связи с эти следует заметить, что имеет место "оборачивание" физического вакуума: в своем самодвижении, порождая моменты самого себя, физический вакуум сам же оборачивается частью этого момента.

Всевозможные вакуумные конденсаты играют роль макроусловий, по отношению к которым проявляются свойства микрообъектов. Следствием оборачивания вакуума при его самодвижении является физическая неразложимость мира, выражаемая в том, что в основании каждой определенности, каждого физического состояния лежит конкретный вакуумный конденсат.

Последним признаком, предъявляемым к исходной абстракции является требование совпадения ее в общем и целом (в онтологическом аспекте) с тем, что было исторически первым в реальном развитие предмета. Иными словами, онтологический аспект сводится к вопросу о вакуумной стадии космологического расширения Вселенной в окрестностях Большого взрыва. Существующая теория предполагает существование такой стадии.

В то же время имеется и экспериментальный аспект вопроса, ибо именно на вакуумной стадии происходит целый ряд физических процессов, итогом которых является формирование макросвойств Вселенной в целом. Следствия этих процессов можно наблюдать экспериментально. Можно сказать, что онтологический аспект проблемы находится в стадии конкретного теоретического и экспериментального исследования.

Новое понимание сущности физического вакуума

Современные физические теории демонстрируют тенденцию перехода от частиц - трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства-времени. Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус.

В связи с тем, что физический вакуум претендует на фундаментальный статус, даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений.

Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Таким образом, приходим к выводу, что на онтологический статус может претендовать та сущность, которая лишена каких-либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и описание при помощи признаков и мер.

Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим.

Таким образом, требование фундаментальности и первичности для некой сущности влечет за собой выполнение следующих основных условий:

Не быть составной.

Иметь наименьшее количество признаков, свойств и характеристик.

Иметь наибольшую общность для всего многообразия объектов и явлений.

Быть потенциально всем, а актуально ничем.

Не иметь никаких мер.

Не быть составной - это означает не содержать в себе ничего, кроме самой себя. Относительно наименьшего количества признаков, свойств и характеристик идеальным должно быть требование - не иметь их совсем. Иметь наибольшую общность для всего многообразия объектов и явлений - это означает не обладать признаками частных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем - это означает оставаться ненаблюдаемым, но в то же время сохранять статус физического объекта. Не иметь никаких мер - это означает быть нульмерным.

Эти пять условий чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали, что мир возник из фундаментальной сущности - из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков.

Перечисленным выше пяти требованиям не удовлетворяет ни один дискретный объект вещественного мира и ни один квантовый объект поля. Отсюда следует, что этим требованиям может удовлетворять только непрерывная сущность. Поэтому, физический вакуум, если его считать наиболее фундаментальным состоянием материи, должен быть непрерывным (континуальным). Кроме того, распространяя достижения математики на область физики (континуум-гипотеза Кантора), приходим к выводу о несостоятельности множественной структуры физического вакуума. Это значит, что физический вакуум недопустимо отождествлять с эфиром, с квантованным объектом или считать его состоящим из каких бы то ни было дискретных частиц, даже если эти частицы виртуальные.

В предлагается рассматривать физический вакуум как антипод вещества. Таким образом, вещество и физический вакуум расцениваются как диалектические противоположности. Целостный мир представлен совместно веществом и физическим вакуумом. Такой подход к этим сущностям соответствует физическому принципу дополнительности Н.Бора. В таких отношениях дополнительности следует рассматривать физический вакуум и вещество.

С такого рода физическим объектом - ненаблюдаемым, в котором нельзя указать никаких мер, физика еще не сталкивалась. Предстоит преодолеть этот барьер в физике и признать существование нового вида физической реальности - физического вакуума, обладающего свойством непрерывности. Физический вакуум, наделенный свойством непрерывности, расширяет класс известных физических объектов. Несмотря на то, что физический вакуум является столь парадоксальным объектом, он все увереннее становится предметом изучения физики. В то же время, по причине его непрерывности, традиционный подход, основанный на модельных представлениях, для вакуума неприменим. Поэтому науке предстоит найти принципиально новые методы его изучения. Выяснение природы физического вакуума позволяет по-иному взглянуть на многие физические явления в физике элементарных частиц и в астрофизике. Вся видимая Вселенная и темная материя находятся в ненаблюдаемом, непрерывном физическом вакууме. Физический вакуум генетически предшествует физическим полям и веществу, он порождает их, поэтому вся Вселенная живет по законам физического вакуума, которые науке пока еще не известны.

Заключение

Современный этап развития физики достиг уже того уровня, когда можно рассматривать теоретический образ физического вакуума в структуре физического знания. Именно физический вакуум наиболее полно удовлетворяет современным представлениям об исходной физической абстракции и, по мнению многих ученых, имеет полное право претендовать на фундаментальный статус. Этот вопрос сейчас активно изучается, и теоретические выводы вполне соответствуют экспериментальным данным, полученным на данный момент в мировых лабораториях.

Решение вопроса об исходной абстракции - физическом вакууме крайне важно, так как дает возможность определить отправную точку развития всего физического знания. Это позволяет реализовать метод восхождения от абстрактного к конкретному, что позволит в дальнейшем раскрыть и другие тайны мироздания.

Список литературы

1. Р.Подольный. Нечто по имени ничто. М. 1983.

2. Н.В.Косинов. Физический вакуум и гравитация". Физический вакуум и природа. N4, 2000

3. Н.В.Косинов. На пути к вакуумной картине мира. Непоседа. N4(49), 1997.

4. Ю.А.Бауров, О структуре физического пространства и новом виде взаимодействия в природе, Сознание и физическая реальность, Том 1, N 4, 1996, с.28-36

Размещено на Allbest.ru

Подобные документы

    Загадка природы физического вакуума. Философские проблемы вакуума. Физические феномены. Новое понимание сущности физического вакуума. Макроскопические флуктуации в процессах различной природы. Электроводородный генератор Студенникова.

    статья , добавлен 25.12.2003

    Исследование основных критериев первичности и фундаментальности для физических объектов. Изучение закона уменьшения энтропии в процессах самоорганизации. Анализ проблем создания теории физического вакуума, несостоятельности концепции дискретного вакуума.

    реферат , добавлен 19.05.2012

    Понятие вакуума как пространства, лишенного вещества. История изучения вакуума. Технический вакуум, мера степени его разрежения. Понятие физического вакуума в квантовой физике. Ложный вакуум и космическое пространство. Измерение степени вакуума.

    реферат , добавлен 16.02.2015

    Взгляды ученых на проблему эфира. Возникновение представления об эфирной среде как о мировой среде задолго до Декарта в древнем Китае. Разработка теории физического вакуума. Предположения ученых о том, что физический вакуум способен рождать частицы.

    реферат , добавлен 05.12.2008

    Способ создания дополнительной подъёмной силы. Проявление свойств физического вакуума в процессах, происходящих в космосе. Исследование явления кавитации. Принцип действия элементарного гравитационного генератора. Рождение света из вакуума в макромире.

    статья , добавлен 09.05.2014

    Анализ развития идей атомизма в истории науки. Роль элементарных частиц и физического вакуума в строении атома. Суть современной теории атомизма. Анализ квантовой модели атома. Введение понятия "молекула" Пьером Гассенди. Открытие эффекта Комптона.

    контрольная работа , добавлен 15.01.2013

    Концепция единого поля силового пространственного взаимодействия материальных тел. Перенесение в пространстве вакуумной среды энергии ее возбуждения. Законы Кулона в электромагнетизме и тяготения Мичелла-Кавендиша. Модификационная постоянная Планка.

    статья , добавлен 09.04.2012

    Состав, принципы работы и назначение растрового электронного микроскопа РЭМН – 2 У4.1. Особенности восстановления рабочего вакуума в колонне растрового микроскопа. Функционирование диффузионного и форвакуумного насосов, датчиков для измерения вакуума.

    дипломная работа , добавлен 05.11.2009

    Особенности протекания экзотермических и экзоэргических процессов. Понятие материи как сущности мира и того общего, что входит в состав всех объектов природы. Исследование двойственной корпускулярно-волновой сущности микрочастиц. Теория "кипения" вакуума.

    контрольная работа , добавлен 08.09.2009

    Регуляризация квантового поля Паули–Вилларса. Закон тяготения в искривленном пространстве-времени. Уравнение состояния космического вакуума. Эволюция Вселенной в эпоху после рекомбинации. Космологические термины; уравнения Эйнштейна для Вселенной.