Линейный стабилизатор напряжения на оу. Построение двуполярных стабилизаторов напряжения на оу

Стабильность напряжения питания является необходимым условием правильной работы многих электронных устройств. Для стабилизации постоянного напряжения на нагрузке при колебаниях сетевого напряжения и изменении потребляемого нагрузкой тока между выпрямителем с фильтром и нагрузкой (потребителем) ставят стабилизаторы постоянного напряжения.

Выходное напряжение стабилизатора зависит как от входного напряжения стабилизатора, так и от тока нагрузки (выходного тока):

Найдем полный дифференциал изменение напряжения при изменении и :

Разделим правую и левую части на , а также умножим и разделим первое слагаемое в правой части на , а второе слагаемое на .

Вводя обозначения и переходя к конечным приращениям, имеем

Здесь - коэффициент стабилизации, равный отношению приращений входного и выходного напряжений в относительных единицах;

Внутреннее (выходное) сопротивление стабилизатора.

Стабилизаторы подразделяются на параметрические и компенсационные.

Параметрический стабилизатор основан на использовании элемента с нелинейной характеристикой, например полупроводникового стабилитрона (см. § 1.3). Напряжение на стабилитроне на участке обратимого электрического пробоя почти постоянно при значительном изменении обратного тока через прибор.

Схема параметрического стабилизатора приведена на рис. 5.10, а.

Рис. 5.10. Параметрический стабилизатор (а), его схема замещения для приращений (б) и внешняя характеристика выпрямителя со стабилизатором (кривая 2) и без стабилизатора (кривая ) (в)

Входное напряжение стабилизатора должно быть больше напряжения стабилизации стабилитрона . Для ограничения тока через стабилитрон устанавливается балластный резистор Выходное напряжение снимается со стабилитрона. Часть входного напряжения теряется на резисторе , оставшаяся часть приложена к нагрузке:

Учитываем, что , получаем

Наибольший ток через стабилитрон протекает при

Наименьший ток через стабилитрон протекает при

При обеспечении условий - токи стабилитрона, ограничивающие участок стабилизации, напряжение на нагрузке стабильно и равно . Из .

При увеличении растет ток , увеличивается падение напряжения на . При увеличении сопротивления нагрузки уменьшается ток нагрузки, растет на то же значение ток через стабилитрон, падения напряжения на и на нагрузке остаются неизменными.

Для нахождения построим схему замещения стабилизатора рис. 5.10, а для приращений. Нелинейный элемент работает на участке стабилизации, где его сопротивление переменному гоку является параметром прибора. Схема замещения стабилизатора приведена на рис. . Из схемы замещения получаем

Учитывая, что в стабилизаторе , имеем

Для нахождения , так же как и при расчете параметров усилителей (см. § 2.3), воспользуемся теоремой об эквивалентном генераторе и положим , тогда сопротивление на выходе стабилизатора

Выражения (5.16), (5.17) показывают, что параметры стабилизатора определяются параметрами используемого полупроводникового стабилитрона (или другого прибора). Обычно для параметрических стабилизаторов не более 20-40, а лежит в пределах от нескольких ом до нескольких сот ом.

В ряде случаев такие показатели оказываются недостаточными, тогда применяют компенсационные стабилизаторы. На рис. 5.11 приведена одна из простейших схем компенсационных стабилизаторов, в котором нагрузка подключена к источнику входного напряжения через регулирующий нелинейный элемент, транзистор V. На базу транзистора через ОУ подается сигнал ОС. На вход ОУ поступают напряжения с высокоомного резистивного делителя и эталонное (опорное) напряжение .

Рис. 5.11. Простейшая схема компенсационного стабилизатора с ОУ

Рассмотрим работу стабилизатора. Предположим, что увеличилось напряжение , вслед за ним возрастает и При этом на инвертирующий вход ОУ подается положительное приращение напряжения , а на выходе ОУ возникает отрицательное приращение напряжения . К управляющему эмиттерному переходу транзистора V приложена разность базового и эмиттерного напряжений . В рассматриваемом нами режиме , ток транзистора V уменьшается и напряжение ивых снижается почти до первоначального значения. Аналогично будет отработано изменение ивых при увеличении или уменьшении : изменится , возникнет соответствующего знака, изменится ток транзистора . очень высока, так как в процессе работы режим работы стабилитрона практически не изменяется и ток через него стабилен.

Компенсационные стабилизаторы напряжения выпускаются в виде ИМС, которые включают в себя регулирующий нелинейный элемент, транзистор V, ОУ и цепи, связывающие нагрузку с его входом.

На рис. 5.10, в показана внешняя характеристика источника питания со стабилизатором, ее рабочий участок ограничен значениями тока

Однополярные стабилизаторы напряжения на основе ОУ могут быть построены по схеме инвертирующего и неинвертирующего усилителя, на вход которого подано стабильное напряжение от опорного источника. Достоинством таких стабилизаторов является возможность получения различных по абсолютному значению и знаку стабилизированных напряжений при неизменном опорном.

На первом рисунке показана схема стабилизатора в котором на вход неинвертирующего усилителя подано опорное напряжение U0 со стабилитрона VD1. Для увеличения выходного тока стабилизатора используется повторитель напряжения на транзисторе VT1. Выходное напряжение данного стабилизатора рассчитывается по следующей формуле:

Uвых = U0(R1/R2+1)

Для увеличения стабильности опорного напряжения можно подключить параметрический стабилизатор R3 VD1 не ко входу, а к выходу стабилизатора как показано на втором рисунке. Ток через стабилизатор VD1 в этом случае равен U0R1/(R2R3) и не зависит от изменения входного напряжения, при этом ОУ охватывается двумя видами обратной связи: положительной и отрицательной. Наличие отрицательной связи приводит к тому, что на выходе ОУ при включении питания в принципе может установится как положительное так и отрицательное напряжение. Для установления напряжения нужного знака, необходима некая начальная несимметрия. В стабилизаторе эта несимметрия создается за счет выходного транзисторного повторителя напряжения.

Двухполярные стабилизаторы напряжения как правило состоят на основе двух однополярных, использующих один источник опорного напряжения. Пример такого двух полярного стабилизатора показан на рисунке.

ОУ DA2 здесь включен по схеме инвертора с коэффициентом передачи -1. Выходные каскады в двух полярном стабилизаторе могут быть построены на основе транзисторных повторителей как в предыдущих схемах. В данном стабилизаторе применен другой вариант выходного каскада, достоинством которого является возможность уменьшить минимальную разность выходного и входного напряжения стабилизатора до 3-5 В. Она определяется падением напряжения на базо-эмиттерном переходе транзистора от 0,4 до 0,7 В и разностью между напряжением питания и максимальным выходным напряжением ОУ от 2 до 4 В. Например если выходное напряжение равно 15 В, то на базу транзистора необходимо подать 15,6 В, соответственно напряжение питания ОУ должно быть не менее 17,6-19,6 В. В случае применения выходного каскада показанного на рисунке, минимальная разность выходного и входного напряжения стабилизатора определяется напряжением насыщения транзисторов VT1 VT4 и не превышает 1 В.

Транзисторы VT2 VT3 в стабилизаторе дополнительно усиливают ток, поступающий на базы выходных транзисторов VT1 VT4, что дает возможность увеличить выходную мощность стабилизатора за счет использования более мощных выходных транзисторов.

В ранее рассмотренных стабилизаторах выходное напряжение не может быть меньше опорного, поэтому для получения малых выходных напряжений использовать низковольтные стабилитроны или использовать в качестве опорных источников светодиоды.

Выходное напряжение на выходе стабилизатора которое меньше опорного напряжения можно получить используя схему показанную на рисунке.

В схеме мост образованный резисторами R1 R2 R3 и стабилитроном VD1, включен между напряжениями +Uвых и -Uвых. Если R4=R5, то получаем +Uвых = U0(1+R1/R2)/2 , где U0 — падение напряжения на стабилитроне. Ток через стабилитрон равен U0R1/(R2R3) .

Источник — Гутников В.С. Интегральная электроника в измерительных уст-вах (1988)

Рис. 8. Основная схема включения регулятора КР142ЕН1

Опорное напряжение на выводе 5 микросхемы составляет около 2 В, причем делитель напряжения, снимаемого с опорного стабилитрона, введен в состав микросхемы. Благодаря этому при построении стабилизаторов с выходными напряжениями от 3 до 30 В применяют одну и ту же схему включения с внешним делителем выходного напряжения. Дополнительно отметим, что у микросхемы КР142ЕН1.2 имеются свободные выводы не только инвертирующего (вывод 3), но и неинвертирующего (вывод 4) входов усилителя, что упрощает стабилизатор отрица тельного напряжения с этой ИМС. В этом заключается основное отличие микросхемы КРН2ЕШ,2 от микросхемы 142ЕН1.2 более раннего выпуска.

Внешний транзистор VT1 - это эмиттерный повторитель для увеличения тока нагрузки до 1…2 А. Если требуется ток не более 50 мА, то транзистор следует исключить, используя вывод 8 микросхемы вместо эмиттерного вывода транзистора VT1.

В составе микросхемы имеется транзистор, защищающий выходной каскад от перегрузки по току. Токо–ограничительное сопротивление резистора R4 выбирают из расчета падения напряжения на нем 0,66 В при протекании аварийного тока. Без змиттерного повторителя VT1 следует установить резистор R4 сопротивлением 10 Ом.

Чтобы создать «падающую» характеристику ограничения тока перегрузки, подключают делитель R2R3 и производят расчет по следующим зависимостям:

Пример, I макс = 0,6 А (задано); I К3 - 0,2 А (выбираем не менее 1 /з I макс); U бЭ =0,66 В; U вых =12 В (задано); а = 0,11 (по расчету); R3 = 10 кОм (типичное значение); R2 = 1,24 кОи; R4 = 3,7 Ом.

В микросхеме дополнительно имеется вывод 14 для Управления стабилизатором. Если подать на этот вход единичный ТТЛ–уровень + (2,5…5) В, то выходное напряжение стабилизатора упадет до нуля. Чтобы обратный ток при наличии емкостной нагрузки не разрушил выходной транзистор, установлен диод VD1.

Конденсатор С1 емкостью 3,3…10 мк подавляет шум стабилитрона, однако установка его не является необходимой. Конденсатор С2 (емкостью до 0,1 мк) - элемент частотной коррекции; допустимо вместо него соединить вывод 13 с «земляным» проводом через последовательную RС–цепь 360 Ом (максимум) и 560 пФ (минимум).

На базе микросхем КР142ЕШ.2 (рис. 8) можно создавать стабилизаторы отрицательных напряжений (рис. 9).

Рис 9. Стабилизация отрицательного напряжения

При этом стабилитрон VD1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора VT1 не должен превышать максимально допустимого тока стабилитрона, иначе следует применить составной транзистор.

Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения, пример которых дан на рис. 10.

Рис. 10. Релейный стабилизатор напряжения

В таком стабилизаторе опорное напряжение, как и в стабилизаторе по схеме рис. 8, установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задается вспомогательным делителем R2R3 и равна &U=U B x-R4IR3. Частота автоколебаний определяется из тех же соображений, что и для стабилизатора по схеме на рис. 7. Следует лишь иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

Необходимо рассмотреть еще один класс стабилизаторов - стабилизаторов тока, преобразующих напряжение в ток независимо от изменения сопротивления нагрузки. Из таких стабилизаторов, позволяющих заземлять нагрузку, отметим стабилизатор по схеме на рис. 11.

Рис. 11. Стабилизатор тока на ОУ

Ток нагрузки стабилизатора I u =U B-x .lRl. Интересно, что если напряжение U BX подавать на инвертирующий вход, то изменится только направление тока без изменения его значения.

Более мощные источники тока предусматривают подключение к ОУ усилительных транзисторов. На рис. 12 дана схема источника тока, а на рис. 13 - схема приемника тока.

Рис. 12. Прецизионная схема источника тока; входное напряжение - отрицательное

Рис 13. Схема прецизионного отвода тока; входное напряжение - положительное

В обоих устройствах сила тока определяется расчетом так же, как и в предыдущем варианте стабилизатора. Этот ток тем точнее зависит лишь от напряжения U вх и номинала резистора R1, чем меньше входной ток ОУ и чем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

Схема простого мощного источника тока для зарядного устройства показана на рис. 14.

Рис. 14. Источник тока высокой мощности

Здесь R4 - токоизмерительный проволочный резистор. Номинальное значение тока нагрузки I н =ДU/R4 = 5 А устанавливается. примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение U вх >18 В без учета пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.

Литература

Бокуняев А. А. Релейные стабилизаторы постоянного напряжения - М: Энергия, 1978, 88 с.

Рутксвски Дж. Интегральные операционные усилители. - М.: Мир, 1978, 323 с.

Xоролац П, Хилл У. Искусство схемотехники, т. 1. - М.; Мир, - 1986, 598 с.

Спенсер Р Недорогой источник питания с нулевыми пульсациями. - Электроника, 1973, № 23, с 62.

Шило В. Л Линейные интегральные схемы. - М. Cов. Радио, 1979, 368 с.

Достоинства ШИМ-регуляторов с применением операционных усилителей так это то что можно применять практически любой ОУ (в типовой схеме включения, конечно).

Уровень выходного эффективного напряжения регулируется путём изменения уровня напряжения на неинвертирующем входе ОУ, что позволяет использовать схему как составную часть различных регуляторов напряжения и тока, а также схем с плавным зажиганием и гашением ламп накаливания.
Схема легка в повторении, не содержит редких элементов и при исправных элементах начинает работать сразу, без настройки. Силовой полевой транзистор подбирается по току нагрузки, но для уменьшения тепловой рассеиваемой мощности желательно использовать транзисторы, рассчитанные на большой ток, т.к. у них наименьшее сопротивление в открытом состоянии.
Площадь радиатора для полевого транзистора полностью определяется выбором его типа и током нагрузки. Если схема будет использоваться для регулирования напряжения в бортовых сетях + 24В, для предотвращения пробоя затвора полевого транзистора, между коллектором транзистора VT1 и затвором VT2 следует включить резистор сопротивлением 1 К, а резистор R6 зашунтировать любым подходящим стабилитроном на 15 В, остальные элементы схемы не изменяются.

Во всех ранее рассмотренных схемах в качестве силового полевого транзистора используются n - канальные транзисторы, как наиболее распространённые и имеющие наилучшие характеристики.

Если требуется регулировать напряжение на нагрузке, один из выводов которой подключен к "массе" , то используются схемы, в которых n - канальный полевой транзистор подключается стоком к + источника питания, а в цепи истока включается нагрузка.

Для обеспечения возможности полного открытия полевого транзистора схема управления должна содержать узел повышения напряжения в цепях управления затвором до 27 - 30 В, как это сделано в специализированных микросхемах U 6 080B ... U6084B , L9610, L9611 , тогда между затвором и истоком будет напряжение не менее 15 В. Если ток нагрузки не превышает 10А, можно использовать силовые полевые p - канальные транзисторы, ассортимент которых гораздо уже из - за технологических причин. В схеме изменяется и тип транзистора VT1 , а регулировочная характеристика R7 меняется на обратную. Если у первой схемы увеличение напряжения управления (движок переменного резистора перемещается к " +" источника питания) вызывает уменьшение выходного напряжения на нагрузке, то у второй схемы эта зависимость обратная. Если от конкретной схемы требуется инверсная от исходной зависимость выходного напряжения от входного, то в схемах необходимо поменять структуру транзисторов VT1 , т.е транзистор VT1 в первой схеме необходимо подключить как VT1 у второй схемы и наоборот.

Проведем расчет для канала стабилизатора на 36В и 1А, изображенного на рисунке 4.

Рисунок 4- Схема стабилизатора второго канала

Определим требуемый коэффициент стабилизации стабилизатора:

Зададим точку покоя регулировочного транзистора VT1. При токе в нагрузке 1 А и выходном напряжение 51 В среднее значение напряжения перехода коллектор-эмиттер должно составлять 51-36=15 В. Тогда мощность рассеивания на коллекторе транзистора около 15 Вт. Подбираем транзистор, с выходной характеристикой, близкой к изображенной на рисунке 5, строим нагрузочную прямую и отмечаем точку покоя А для среднего входного напряжения.

Согласно графическим расчетам, выбираем регулирующий транзистор VT1 с большим значением максимального тока коллектора (т.к. номинальный ток велик и равен 1А), например MТ7667. Параметры: максимальный ток коллектора I kmax =3 А, максимальное напряжение коллектор-эмиттер U кэmax =50 В, максимальная мощность рассеяния на коллекторе транзистора Р кmax =25 Вт, коэффициент усиления по току h 21э =70..100, граничная частота коэффициента передачи тока f г =30 MГц .


Рисунок 5- Выходная характеристика регулировочного транзистора

Соответственно на входной характеристике

Рисунок 6- Входная характеристика регулировочного транзистора

Ток базы покоя регулировочного транзистора при среднем коэффициенте усиления по току:

Выбранный ток базы, согласно рисунку 5, 6 составляет

U выхОУ = U бэ + U нmax < U выхmaxОУ;

Uбэ = 1,51 В;

U нmax =36·0.01+36=36.36 В

U выхОУ = 1,51+36.36=37,9 В

I выхОУ = I бmax VT1 = ;

Выбираем операционный усилитель PM155C, c параметрами: напряжение источника питания U ИП =40..50 В, коэффициент усиления 450, входное сопротивление R вх =25 МОм, потребляемая мощность 200мВт, входной ток I вх =80 нА, значения выходных напряжения и тока ОУ: U выхmaxОУ =50 В, I выхmaxОУ =40 мА.

Опорное напряжение формируем с помощью стабилитрона 2N3623, для которого: номинальное напряжение стабилизации 5 В, ток стабилизации 20 мА.

U оп = U ст < U нmin ;

определим сопротивление балластного резистора R1. Из условия I ст ном >> I вхОУ

R1 = = =2300 Ом.

Принимаем стандартное значение 2.3 кОм.

Определим сопротивление резистора R4 из выражения:

U вх =I бVT1 R4+U бэ,

Принимаем стандартное значение 2.7кОм.

Обеспечить требуемые выходные параметры ОУ можно введением обратной связи. Рассчитаем цепь обратной связи: R2-R3, при коэффициенте усиления 10- при меньших значениях будет малая чувствительность, при больших - ОУ быстро будет переходить в насыщение.

Выражая Я, получим:

Так же. Чтобы резисторы не оказывали большого влияния на работу схемы, т.е. ток делителя составлял несколько миллиампер, возьмем значение R3=51кОм, тогда R2==525кОм (Ближайшее стандартное 510кOм).

Рассчитаем сопротивления делителя R5-R6. Задаваясь током делителя 1 мА, и формируя напряжение обратной связи близкой к 5В, но менее его (для получения положительного сигнала на выходе ОУ), получаем:

R5=(36-5)/0.001=31 кОм;

R6=5/0.001=5 кОм.

Принимаем стандартные значения R5=33кОм R6=5.1 кОм

Проверим правильность выбора сопротивлений:

Напряжение обратной связи, снимаемого с R6 менее опорного (5В), значит, выбор резисторов был проведен правильно.

Рассчитаем элементы схемы защиты от короткого замыкания. Транзистор VT2 при токе нагрузки в пределах 1 А находится в режиме отсечки. При достижение тока нагрузки выше 1 А, VT2 начинает открываться и закорачивает базу VT1, призакрывая его, что вызывает ограничение тока нагрузки. Напряжение, приложенное к переходу коллектор- эммитер VT2 в открытом состоянии за вычетом падения напряжения на R4 (36- 1,51=34.49 В) и напряжения на диоде в прямом направление составит примерно 34 В. Максимальный коллекторный ток в открытом состояние I к нас около 36 мА (рисунок 5).

Возьмем в качестве датчика тока резистор R7 сопротивлением 1 Ом. Тогда при номинальном токе в нагрузке не более 1 А, падение напряжения на нем не превысит 1В.

Выберем в качестве VT2 транзистор 2N2411, с параметрами: максимальный ток коллектора I kmax =160мА, коэффициент усиления по току h 21э =100, максимальное напряжение коллектор-эмиттер U кэmax =100 В, максимальная мощность рассеяния на коллекторе транзистора Р кmax =160 мВт. Диод VD4 - DN380: U ОБР max =100 В, I max vd =1 A

Согласно выбранному режиму работы (рисунок 7) можно найти по выходной характеристики (рисунок 8) коллекторный ток VT2.

Рисунок 7- Входная характеристика транзистора VT2


Рисунок 8- Выходная характеристика транзистора VT2

Для режима отсечки U бэ <1 В и насыщения U бэ >1,2В. Соответственное изменение тока базы обеспечивает резистор R8.

R8= U бэ / I б = 1/1·10 -3 =1 кОм

Конденсатор С1 предотвращает ложное срабатывание схемы защиты при включение ИБП и его емкость подбирается соответственно для пропускания импульсов малой длительности. Примем значение С1=3.3 нФ.

Рассчитаем номиналы элементов схемы защиты от перенапряжения. Выбираем стабилитрон 2С514А: напряжение стабилизации 40В, минимальное напряжение стабилизации 38В, ток стабилизации 15мА; минимальный ток стабилизации 10мА ; транзисторную оптопару АОТ120ЕС: входной ток 3мА, напряжение изоляции 500В, максимальное входное напряжение 1.6В.

В случае достижения напряжения на нагрузке превышающего 38В, равное сумме напряжения стабилизации стабилитрона и прямого падения напряжения на оптроне (от 0.1 до 0.5В), происходит открытие VD5 и начинает протекать ток (минимальный ток стабилизации). Для обеспечения входного напряжения открытия оптопары в 1.6В, необходимо чтобы сопротивление R9 было не более 1.6/0.005=320Ом. Примем стандартное значение R9=300Ом.


Рисунок 9 - Схема моделирования


Рисунок 10 - Выходной сигнал схемы моделирования