Физиологическое значение протеинов. Строение, функции и значение белков

Физиологическая роль и гигиеническое значение белков, жиров, углеводов, витаминов, минеральных веществБелки, жиры, углеводы, витамины - основные пищевые ве­щества в рационе человека. Пищевыми веществами называют та­кие химические соединения или отдельные элементы, которые необходимы организму для его биологического развития, для нор­мального протекания всех жизненно важных процессов.

Белки - это высокомолекулярные азотистые соединения, ос­новная и обязательная часть всех организмов. Белковые вещества участвуют во всех жизненно важных процессах. Например, об­мен веществ обеспечивается ферментами, по своей природе от­носящимися к белкам. Белками являются и сократительные струк­туры, необходимые для выполнения сократительной функции мышц - актомиозин; опорные ткани организма - коллаген костей, хрящей, сухожилий; покровные ткани организма - кожа, ногти, волосы.

Среди многочисленных пищевых веществ белкам принадлежит наиболее важная роль. Они служат источником незаменимых ами­нокислот и так называемого неспецифического азота, необходи­мого для синтеза белков. От уровня снабжения белками в большой степени зависят состояние здоровья, физическое развитие, фи­зическая работоспособность, а у детей раннего возраста - и ум­ственное развитие. Достаточность белка в пищевом рационе и его высокое качество позволяют создать оптимальные условия внут­ренней среды организма, необходимые для роста, развития, нор­мальной жизнедеятельности человека и его работоспособности. Под влиянием белковой недостаточности могут развиваться такие па­тологические состояния, как отек и ожирение печени; наруше­ние функционального состояния органов внутренней секреции, особенно половых желез, надпочечников и гипофиза; нарушение условно-рефлекторной деятельности и процессов внутреннего торможения; снижение иммунитета; алиментарная дистрофия. Белки состоят из углерода, кислорода, водорода, фосфора, серы и азота, входящих в состав аминокислот - основных структурных компонентов белка. Белки различаются уровнем содержания ами­нокислот и последовательности их соединения. Различают белки животные и растительные.

В отличие от жиров и углеводов белки содержат кроме углеро­да, водорода и кислорода еще азот - 16%. Поэтому их называют азотсодержащими пищевыми веществами. Белки нужны живот­ному организму в готовом виде, так как синтезировать их, по­добно растениям, из неорганических веществ почвы и воздуха он не может. Источником белка для человека служат пищевые вещества животного и растительного происхождения. Белки не­обходимы прежде всего как пластический материал, это их ос­новная функция: они составляют в целом 45% плотного остатка организма.

Белки входят также в состав гормонов, эритроцитов, некото­рых антител, обладая высокой реактивностью.

В процессе жизнедеятельности происходит постоянное ста­рение и отмирание отдельных клеточных структур, и белки пищи служат строительным материалом для их восстановления. Окис­ление в организме 1 г белка дает 4,1 ккал энергии. В этом и заключается его энергетическая функция. Большое значение имеет белок для высшей нервной деятельности человека. Нор­мальное содержание белка в пище улучшает регуляторную функ­цию коры головного мозга, повышает тонус центральной нерв­ной системы.

При недостатке белка в питании возникает ряд патологических изменений: замедляются рост и развитие организма, уменьшает­ся вес; нарушается образование гормонов; снижаются реактив­ность и устойчивость организма к инфекциям и интоксикациям.

Питательная ценность белков пищи зависит прежде всего от их аминокислотного состава и полноты утилизации в организме. Из­вестны 22 аминокислоты, каждая имеет особое значение. Отсут­ствие или недостаток какой-либо из них ведет к нарушению от­дельных функций организма (рост, кроветворение, вес, синтез белка и др.). Особенно ценны следующие аминокислоты: лизин, гистидин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин, валин. Для маленьких детей большое значение имеет гистидин.

Некоторые аминокислоты не могут синтезироваться в организме и заменяться другими. Их называют незаменимыми. В зависимости от содержания заменимых и незаменимых аминокислот пищевые белки разделяются на полноценные, аминокислотный состав ко­торых близок к аминокислотному составу белков человеческого тела и содержит в достаточном количестве все незаменимые ами­нокислоты, и на неполноценные, в которых отсутствуют одна или несколько незаменимых аминокислот. Наиболее полноценны бел­ки животного происхождения, особенно белки желтка куриного яйца, мяса и рыбы. Из растительных белков высокой биологичес­кой ценностью обладают белки сои и в несколько меньшей степе­ни - фасоли, картофеля и риса. Неполноценные белки содержат­ся в горохе, хлебе, кукурузе и некоторых других растительных продуктах.

Физиолого-гигиенические нормы потребности в белках. Эти нор­мы исходят из минимального количества белка, которое способно поддержать азотистое равновесие организма человека, т.е. ко­личество азота, введенного в организм с белками пищи, равно количеству азота, выведенного из него с мочой за сутки.

Суточное потребление пищевого белка должно полностью обес­печивать азотистое равновесие организма при полном удовлетво­рении энергетических потребностей организма, обеспечивать не­прикосновенность белков тела, поддерживать высокую работо­способность организма и сопротивляемость его неблагоприятным факторам внешней среды. Белки в отличие от жиров и углеводов не откладываются в организме про запас и должны ежедневно вво­диться с пищей в достаточном количестве.

Физиологическая суточная норма белка зависит от возраста, пола и профессиональной деятельности. Например, для мужчин она составляет 96-132 г, для женщин - 82-92 г. Это нормы для жителей больших городов. Для жителей малых городов и сел, за­нимающихся более тяжелой физической работой, норма суточно­го потребления белка увеличивается на 6 г. Интенсивность мы­шечной деятельности не влияет на обмен азота, но необходимо обеспечить достаточное для таких форм физической работы раз­витие мышечной системы и поддерживать ее высокую работоспо­собность (табл.30).


Группы по характеру

Возраст, лет

Потребление белков

Мужчины

Женщины

Всего

Животных

Всего

Животных

Труд, не свя­занный с физи­ческой нагрузкой

18-40

96

58

82

49

40-60

89

53

75

45

Механизирован­ный труд и сфера обслуживания, где невысокая физическая нагрузка

18-40

99

54

84

46

40-60

92

50

77

43

Механизирован­ный труд и сфера обслуживания, где значительная физическая нагрузка

18-40

102

56

86

47

40-60

93

51

79

44

Механизирован­ный труд, где большая физи­ческая нагрузка

18-40

108

54

92

46

40-60

100

50

85

43

Пенсионный возраст

60-70

80

48

71

43

70 и более

75

45

68

41

Взрослому человеку в обычных условиях жизни при легкой ра­боте требуется в сутки в среднем 1,3-1,4 г белка на 1 кг веса тела, а при физической работе - 1,5 г и более (в зависимости от тяже­сти труда).

Таблица 31

Потребность в белках детей и подростков

(по В. А. Покровскому)


Возраст,

Количество белков, г/день

Возраст, лет

Количество белков, г/день

всего

в том числе животных

всего

в том числе животных

0,5-1

25

20-25

7-10

80

48

1-1,5

48

36

11-13

96

58

1,5-2

53

40

14-17 (юноши)

106

64

3-4

63

44

14-17 (девушки)

93

56

5-6

72

47

В дневном рационе спортсменов количество белка должно со­ставлять 15-17%, или 1,6-2,2 г на 1 кг массы тела.

Белки животного происхождения в суточном рационе взрос­лых должны занимать 40-50% от общего количества потребляе­мых белков, спортсменов - 50-60, детей - 60-80%. Избыточное потребление белков вредно для организма, так как затрудняются процессы пищеварения и выделения продуктов распада (аммиа­ка, мочевины) через почки.

Таблица 32

Суточная потребность в пищевых белках у школьников разного возраста

(по Н.И.Волкову)

Жиры состоят из нейтрального жира - триглицеридов жирных кислот (олеиновой, пальмитиновой, стеариновой и др.) и жироподобных веществ - липоидов. Главная роль жиров заключается в доставке энергии. При окислении 1 г жира в организме человек получает в 2,2 раза больше энергии (2,3 ккал), чем при окислении углеводов и белков.

Жиры выполняют и пластическую функцию, являясь струк­турным элементом протоплазмы клеток. В жирах находятся необ­ходимые для жизни жирорастворимые витамины A, D, Е, К.

Липоиды входят также в состав клеточных мембран, гормо­нов, нервных волокон и оказывают существенное влияние на ре­гуляцию жирового обмена. Жир обладает низкой теплопроводно­стью, благодаря чему, находясь в подкожно-жировой клетчатке, предохраняет организм от охлаждения.

Питательная ценность различных жиров и жироподобных ве­ществ неодинакова (табл. 33).
Таблица 33

Характеристика некоторых пищевых жиров


Вид жира

Всасываемость,

Содержание, %

Токоферолы,

Линолевая кислота

Фосфатиды

Молочный

93-98

0,6-3,6

До 0,3

0,03

Баранье сало

74-84

3,0-4,0

-

-

Говяжий

75-88

До 4,0

-

0,01

Свиное сало

95

3,8

До 1,0

0,03

Подсолнеч­ное масло

95-98

54,0

-

0,7-1,2

Животные жиры имеют более богатый по сравнению с расти­тельными жирами витаминный состав. В растительных маслах со­держится только витамин Е, но зато в отличие от животных жи­ров они содержат больше полиненасыщенных жирных кислот.

В жирах присутствуют как насыщенные жирные кислоты (паль­митиновая, стеариновая и др.), так и полиненасыщенные (олеи­новая, линолевая и др.). Полиненасыщенные жирные кислоты биохимически значительно более активны, чем насыщенные, интен­сивнее окисляются и лучше используются в энергетическом об­мене.

Линолевая, линоленовая и арахидоновая жирные кислоты, не синтезируемые в организме человека, относятся к числу важ­нейших, поскольку необходимы для предупреждения атероскле­роза. В день достаточно употреблять с пищей 20 - 30 г раститель­ного масла. Полиненасыщенные жирные кислоты значительно повышают усвояемость жиров.

Жироподобные вещества. Наибольшее значение из них имеют фосфатиды и стерины. Фосфатиды содержат соли фосфорной кис­лоты, в частности лецитин, который наряду с другими фосфатидами входит в состав нервной ткани, клеточных оболочек. Основ­ными источниками фосфатидов служат говядина, сливки, печень, яичный белок, бобовые.

Стерины участвуют в образовании гормонов, желчных кислот и некоторых других биологически ценных веществ. Наиболее ва­жен из них холестерин, который входит в состав всех клеток и придает им гидрофильность, т. е. способность удерживать воду. Хо­лестерин является структурным элементом нервных волокон.

У здоровых людей около 80 % необходимого холестерина син­тезируется печенью и лишь 20 % поступает извне с пищей, а по­этому излишнее ограничение содержащих его продуктов (масла, яиц, печени) нецелесообразно. Это необходимо лишь больным с определенными заболеваниями и лицам старшего и пожилого воз­раста.

По происхождению все жиры подразделяются на полноцен­ные (животные) и неполноценные (растительные). Основными источниками животных жиров служат сливочное масло и сало, ими богаты сливки, сметана, жирное молоко, жирные сорта сы­ра, растительных жиров - подсолнечное, кукурузное, оливковое масла.

Растительное масло должно быть обязательным компонентом в питании спортсменов, у которых повышен расход витамина Е; оно необходимо для жирового обмена, поскольку нормализует белково-жировые компоненты крови, предупреждая развитие ате­росклероза.

Переваривание и усвоение жиров в организме человека про­исходит в кишечнике при активном участии ферментов, синтези­руемых печенью и поджелудочной железой, а также стенками са­мого кишечника. Жиры - основные источники энергии для чело­века при длительной физической работе умеренной интенсивно­сти. Продолжительная безжировая диета может привести к значи­тельным нарушениям функционального состояния человека. Но жиры животного происхождения могут принести значительный вред здоровью человека в случае их избыточного потребления, вызвав развитие и прогрессирование одного из тяжелейших забо­леваний - атеросклероза. Поэтому гигиенисты питания разрабо­тали нормативы потребления жира для различных групп населе­ния (возрастных, половых, профессиональных, населения раз­личных климатогеографических зон).

Физиолого-гигиенические нормы суточного потребления жиров. В РФ они почти такие же, как и для белков: на 1 г белка должен приходиться примерно 1 г жира. Суточная норма потребления жира для лиц, занятых преимущественно умственным трудом, со­ставляет для мужчин 84-90 г, для лиц, занимающихся преиму­щественно физическим трудом, - 103-145 г; для женщин - соот­ветственно 70-77 и 81-102 г. При этом примерно 70% от общего количества потребляемых жиров должны составлять жиры живот­ного происхождения (табл. 34, 35).

При нормальной массе тела количество жиров должно покры­вать 30% дневного рациона, что соответствует 1,3-1,5 г на 1 кг массы тела. Лицам с избыточной массой тела эти нормы целесообразно уменьшить вдвое, у спортсменов, тренирующихся на выносливость, количество жира в периоды объемных тренировок увеличивается до 35 % к общему суточному калоражу (см. табл. 34).

Лекция №3

Тема: Физиологическое значение белков и аминокислот в питании человека.

1 Важнейшие группы пептидов и их физиологическая роль.

2 Характеристика белков пищевого сырья.

3 Новые формы белковой пищи.

4 Функциональные свойства белков.

1 Важнейшие группы пептидов и их физиологическая роль.

Пептиды – это олигомеры, составленные из остатков аминокислот. Они имеют невысокую молекулярную массу (содержание остатков аминокислот колеблется от нескольких штук до нескольких сотен).

В организме пептиды образуются либо в процессе синтеза из аминокислот, либо при гидролизе (расщеплении) белковых молекул.

На сегодня установлены физиологическое значение и функциональная роль наиболее распространенных групп пептидов, от которых зависят здоровье человека, органолептические и санитарно-гигиенические свойства пищевых продуктов.

Пептиды-буферы. В мышцах животных и человека обнаружены дипептиды, выполняющие буферные функции, то есть поддерживающие постоянный уровень рН.

Пептиды-гормоны . Гормоны – вещества органической природы, вырабатываемые клетками желез, регулируют деятельность отдельных органов, желез и организма в целом: сокращение гладкой мускулатуры организма и секреции молока молочными железами, регуляция деятельности щитовидной железы, активности роста организма, образования пигментов, обуславливающих цвет глаз, кожи, волос.

Нейропептиды. Это две группы пептидов (эндорфины и энкефалины ), содержащихся в мозге человека и животных. Они определяют реакции поведения (боязнь, страх), влияют на процессы запоминания, обучения, регулируют сон, снимают боль.

Вазоактивные пептиды синтезируются из белков пищи в результате, они оказывают влияние на тонус сосудов.

Пептидные токсины представляют собой группу токсинов, вырабатываемых мироорганизмами, ядовитыми грибами, пчёлами, змеями, морскими моллюсками и скорпионами. Для пищевой промышленности они нежелательны. Наибольшую опасность представляют токсины микроорганизмов (золотистый стафилококк, бактерии ботулизма, сальмонеллы), в том числе грибков, которые развиваются в сырье, полуфабрикатах и готовых пищевых продуктах.

Пептиды-антибиотики . Представители данной группы пептидов бактериального или грибкового происхождения используется в борьбе с инфекционными заболеваниями, вызываемыми стрептококками, пневмококками, стафилококками и др. микроорганизмами.

Вкусовые пептиды – прежде всего это соединения со сладким или горьким вкусом. Пептиды горького вкуса образуются в молодых ещё незрелых ферментативных сырах. Пептиды со сладким вкусом (аспартам ) используются в качестве заменителя сахара.

Протекторные пептиды выполняют защитные функции, прежде всего – антиокислительные.

2 Характеристика белков пищевого сырья.

Пептиды, имеющие молекулярную массу более 5000 Да, и выполняющие ту или иную биологическую функцию, называются белками.

Функциональные свойства белков зависят от последовательности аминокислот в полипептидной цепи (так называемая первичная структура), а также от пространственной структуры полипептидной цепи (зависят от вторичной, третичной и четвертичной структур).

Разные продукты питания отличаются качественным и количественным содержанием белков.

В злаковых культурах содержание общего белка составляет 10÷20%. Анализируя аминокислотный состав суммарных белков различных злаковых культур следует отметить, что все они, за исключением овса, бедны лизином (2,2÷3,8%). Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина и цистеина (1,6÷1,7 мг/100 гбелка). Наиболее сбалансированными по аминокислотному составу являются овес, рожь и рис.

В бобовых культурах (соя, горох, фасоль, вика) содержание общего белка высоко и составляет 20÷40%. Наиболее широкое применение получила соя. Её скор близок к единице по пяти аминокислотам, но при этом в сое содержится недостаточно триптофана, фенилаланина и тирозина и очень низкое содержание метионина.

В масличных культурах (подсолнечник, хлопчатник, рапс, лён, клещевина, кариандр) содержание общего белка составляет 14÷37%. При этом аминокислотный скор белков всех масличных (в меньшей степени хлопчатника) достаточно высок даже для лимитирующих кислот. Этот факт определяет целесообразность получения из масличного сырья концентрированных форм белка и создание на их основе новых форм белковой пищи.

Относительно низкое содержание азотистых веществ в картофеле (около 2%), овощах (1÷2%) и плодах (0,4÷1,0%) указывают на незначительную роль этих видов пищевого растительного сырья в обеспечении продуктов питания белком.

Мясо, молоко и получаемые из них продукты содержат необходимые организму белки, которые благоприятно сбалансированы и хорошо усваиваются (при этом показатель сбалансированности и усвоения у молока выше, чем у мяса). Содержание белка в мясных продуктах колеблется от 11 до 22%. Содержание белков в молоке колеблется от 2,9 до 3,5%.

3 Новые формы белковой пищи.

Сегодня в условиях постоянно растущего общества и ограниченности ресурсов перед человеком стоит необходимость создания современных продуктов питания, обладающих функциональными свойствами и отвечающих требованиям науки о здоровом питании.

Новые формы белковой пищи – это продуты питания, получаемые на основе различных белковых фракций продовольственного сырья с применением научно обоснованных способов переработки, и имеющие определённый химический состав, структуру и свойства.

Широкое признание получили различные растительные белковые источники: зернобобовые, хлебные и крупяные и побочные продукты их переработки, масличные; овощи и бахчёвые, вегетативная масса растений.

При этом для производства белковых продуктов преимущественно используются соя и пшеница.

Продукты переработки соевых белков подразделяются на три группы, отличающиеся по содержанию белка: муку и крупу получают путём помола в них содержится 40÷45% белка от общей массы продукта; соевые концентраты получают путём удаления водорастворимых компонентов, они содержат 65÷70% белка; соевые изоляты получают экстракцией белка, они содержат не менее 90% белка.

На основе сои получают текстурированные белковые продукты , в которых соевые белки используют, например, вместо белков мяса. Гидролизованные соевые белки называются модифицированными . Их используют как функциональные и вкусовые добавки к пище.

Сегодня на основе сои также выпускают соевое молоко, соевый соус, тофу (соевый творог) и др. продукты питания.

Из пшеницы или пшеничной муки методом водной экстракции получают сухую пшеничную клейковину с содержанием белка 75÷80%.

В то же время наличие лимитирующих аминокислот в растительных белках определяет их неполноценность. Выходом здесь является совместное использование различных белков, что обеспечивает эффект взаимного обогащения. Если при этом достигают повышения аминокислотного скора каждой незаменимой лимитирующей аминокислоты по сравнению отдельным использованием исходных белков, то говорят об эффекте простого обогащения , если после смешивания аминокислотный скор каждой аминокислоты превышает 1,0, то – это эффект истинного обогащения . Использование подобных сбалансированных белковых комплексов обеспечивает повышение усвояемости растительных белков до 80÷100%.

4 Функциональные свойства белков.

Белки и белковые концентраты находят широкое применение в производстве пищевых продуктов благодаря присущим им уникальным функциональным свойствам, под которыми понимают физико-химические характеристики, определяющие поведение белков при переработке в пищевые продукты и обеспечивающие определенную структуру, технологические и потребительские свойства готового продукта.

К наиболее важным функциональным свойствам белков относятся растворимость, водосвязывающая и жиросвязывающая способность, способность стабилизировать дисперсные системы (эмульсии, пены, суспензии), образовывать гели.

Растворимость – это первичный показатель оценки функциональных свойств белков, характеризуется количеством белка, переходящего в раствор. Растворимость в наибольшей степени зависит от присутствия нековалентных взаимодействий: гидрофобных, электростатических и водородных связей. Белки с высокой гидрофобностью хорошо взаимодействуют с липидами, с высокой гидрофильностью хорошо взаимодействуют с водой. Поскольку белки одного типа имеют одинаковый по знаку заряд, то они отталкиваются, что способствует их растворимости. Соответственно в изоэлектрическом состоянии, когда суммарный заряд белковой молекулы равен нулю, а степень диссоциации минимальна, белок обладает низкой растворимостью, даже может скоагулировать.

Водосвязывающая способность характеризуется адсорбцией воды при участии гидрофильных остатков аминокислот, жиросвязывающая – адсорбцией жира за счёт гидрофобных остатков. В среднем на 1 г белка может связывать и удерживать на своей поверхности 2÷4 г воды или жира.

Жироэмульгирующая и пенообразующая способность белков широко используются при получении жировых эмульсий и пен, то есть гетерогенных систем вода-масло, вода-газ. Благодаря наличию в белковых молекулах гидрофильных и гидрофобных зон они взаимодействуют не только с водой, но и с маслом и воздухом и, выступая в качестве оболочки на границе раздела двух сред, способствуют их распределению друг в друге, то есть созданию устойчивых систем.

Гелеобразующие свойства белков характеризуются способностью их коллоидного раствора из свободного диспергированного состояния переходить в связанодисперсное с образованием систем, обладающих свойствами твёрдых тел.

Вязко-эластично-упругие свойства белков зависят от их природы (глобулярные или фибрилярные), а также наличия функциональных групп, которыми белковые молекулы связываются между собой или с растворителем.

Функции белков играют центральную роль в биологических процессах организма и более разнообразны, чем функции других биополимеров - полисахаридов и ДНК. При всей важности этого макронутриента, не стоит недооценивать и другие (жиры , углеводы)

Структура и состав белков.

Основным строительным материалом белка являются аминокислоты . Существует двадцать различных форм аминокислот (α-аминокислот), используемых организмом человека.

Из них, одиннадцать считаются заменимыми, организм способен их самостоятельно синтезировать, а девять являются незаменимыми (жизненно необходимыми), организм не может синтезировать их для удовлетворения потребностей.

Длинные цепи аминокислот называют полипептидами, в зависимости от их расположения вдоль цепи, определяется структура и химические свойства белка.

Аминокислоты представляют собой органические молекулы, которые состоят из углерода, водорода, кислорода, азота и иногда серы.

Являясь основным компонентом для формирования и поддержания структурных и функциональных элементов организма, белки участвуют в функции регенераций клеток и тканей, производства гормонов и ферментов, баланса жидкости и обеспечения энергией.

В зависимости от аминокислотного состава, белки бывают: полноценными - содержат весь набор аминокислот и неполноценными - какие-то аминокислоты в их составе отсутствуют. Если белки содержат только аминокислоты, их называют простыми.

Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу)Простетические группы могут быть органическими (витамины, углеводы, липиды) или неорганическими (например, ионы металлов). , их называют сложными.

Роль и биологические функции белков в организме человека.

Описание с примерами белков осуществляющих данную функцию в организме.

Ферментативная, или каталитичеcкая

Одна из наиболее распространенных функций белков, которая состоит в ускорении химических превращений (синтез и распад веществ; перенос отдельных групп атомов, электронов от одного вещества к другому).

  • Фумаратгидратаза – катализирует обратимое превращение фумарат + Н 2 О -> малат.
  • Цитохромоксидаза – участвует в транспорте электронов на кислород.

Гормональная, или регуляторная

Участие белков в функции регуляции обмена веществ внутри клеток и интеграция обмена в разных клетках целого организма.

  • Инсулин – задействован в функции регуляции углеводного, белкового, жирового и других обменов.
  • Лютропин – задействован в регуляции синтеза прогестерона в желтом теле яичников.

Рецепторная

Избирательное связывание белком различных регуляторов (гормонов, медиаторов, циклических нуклеотидов) на поверхности клеточных мембран или внутри клетки (цитозольные рецепторы).

  • Цитозольный рецептор эстрадиола – связывает эстрадиол внутри клеток, например слизистой матки.
  • Глюкагоновый рецептор – связывает гормон глюкагон на поверхности клеточной мембраны, например печени.
  • Регуляторная субъединица протеинкиназы – связывает цАМФ внутри клеток.

Транспортная

Связывание и транспорт белком веществ между тканями и через мембраны клетки.

  • Липопротеиды – применяются в переносе липидов между тканями организма.
  • Транскортин – переносит кортикостероиды (гормоны коры надпочечников в крови).
  • Миоглобин – переносит кислород в мышечной ткани.

Структурная

Участие белков в построении различных мембран.

  • Структурные белки митохондрий, плазматической мембраны и т. д. .

Опорная, или механическая

Близкая по назначению к структурной функции белка организме. Обеспечивает прочность опорных тканей, применяется в построении внеклеточных структур.

  • Коллаген – структурный элемент опорного каркаса костной ткани, сухожилий.
  • Фиброин – задействован в построении оболочки кокона шелкопряда.
  • β-Кератин – структурная основа шерсти, ногтей, копыт.

Резервная, или трофическая.

Использование белков как запасного материала для питания развивающихся клеток.

  • Проламины и глютелины – запасной материал семян пшеницы (глютен) .
  • Овальбумин – запасной белок куриного яйца (используется при развитии зародыша).

Субстратно-энергетическая

Близка к резервной функции белка в организме. Белок используется как субстрат (при распаде) для образования энергии. При распаде 1 г белка выделяется 17,1 кДж энергии.

  • Все белки (поступающие или с пищей, или внутриклеточные), которые распадаются до конечных продуктов (СО 2 , Н 2 О, мочевина).

Механохимическая, или сократительная

Сокращение (механический процесс) с использованием химической энергии.

  • Миозин – закрепленные нити в миофибриллах.
  • Актин – движущиеся нити в миофибриллах.

Электроосмотическая

Участие белка в функции образовании разницы электрических зарядов и градиента концентрации ионов на мембране.

  • Na + , К + АТФаза – фермент, задействован в создании разницы концентраций ионов Na + и К + и электрического заряда на клеточной мембране.

Энерготрансформирующая

Функция трансформации электрической и осмотической энергии в химическую энергию (АТФ).

  • АТФ-синтетаза – осуществляет функцию синтеза АТФ за счет разности электрических потенциалов или градиента осмотической концентрации ионов на сопрягающей мембране.

Когенетическая

Вспомогательная генетическая функция белков (приставка “ко” в переводе с латинского означает совместность действия). Сами белки не являются генетическим (наследственным) материалом, но помогают нуклеиновым кислотам реализовывать способность к самовоспроизведению и переносу информации.

  • ДНК-полимераза – фермент, применяющийся в репликации ДНК.
  • ДНК-зависимая РНК-полимераза – фермент, участвующий в переносе информации от ДНК к РНК.

Генно-регуляторная

Способность некоторых белков участвовать в регуляции матричных функций нуклеиновых кислот и переноса генетической информации.

  • Гистоны – белки, участвующие в регуляции репликации и частично транскрипции участков ДНК.
  • Кислые белки – участвуют в регуляции процесса транскрипции отдельных участков ДНК.

Иммунологичеcкая, или антитоксическая

Антитела участвуют в обезвреживании чужеродных антигенов микроорганизмов (токсинов, выделяемых ими) путем образования комплекса антиген – антитело.

  • Иммуноглобулины А, М, G и др. – выполняют защитную функцию.
  • Комплемент – белок, способствующий образованию комплекса – антиген-антитело.

Токсигенная

Некоторые белки и пептиды, выделяемые организмами (в основном микроорганизмами), являются ядовитыми для других живых организмов.

  • Ботулинический токсин – пептид, выделяемый палочкой ботулизма.

Обезвреживающая

Благодаря функциональным группам белки связывают токсические соединения (тяжелые металлы, алкалоиды), обезвреживая их.

  • Альбумины – связывают тяжелые металлы, алкалоиды.

Гемостатическая

Участие белка в функции образования тромба и остановке кровотечения.

  • Фибриноген – белок сыворотки крови, полимеризуется в виде сетки, составляющей структурную основу тромба.

P.S. Работа и функции белков являются основой структуры любого организма и всех протекающих в нем процессов.

Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма, справедливо назван протеином, показывающим первую его роль в питании. Роль белков в питании человека трудно переоценить. Сама жизнь является одним из способов существования белковых тел. Биологическая роль белков

Белок можно отнести к жизненно важным пищевым веществам, без которых невозможны жизнь, рост и развитие организма. Достаточность белка в питании и высокое его качество позволяют создать оптимальные условия внутренней среды для нормальной жизнедеятельности организма, его развития и высокой работоспособности. Белок является главной составной частью пищевого рациона, определяющей характер питания. На фоне высокого уровня белка отмечается наиболее полное проявление в организме биологических свойств других компонентов питания. Белки обеспечивают структуру и каталитические функции ферментов и гормонов, выполняют защитные функции, участвуют в образовании многих важных структур белковой природы: иммунных тел, специфических?-глобулинов, белка крови пропердина, играющего известную роль в создании естественного иммунитета, участвуют в образовании тканевых белков, таких как миозин и актин, обеспечивающих мышечные сокращения, глобина, входящего в состав гемоглобина эритроцитов крови и выполняющего важнейшую функцию дыхания. Белок, образующий зрительный пурпур (родопсин) сетчатки глаза, обеспечивает нормальное восприятие света, и др.

Следует отметить, что белки определяют активность многих биологически активных веществ: витаминов, а также фосфолипидов, отвечающих за холестериновый обмен. Белки определяют активность тех витаминов, эндогенный синтез которых осуществляется из аминокислот. Например, из триптофана – витамина PР (никотиновая кислота), обмен метионина – связан с синтезом витамина U (метилметионин-сульфоний). Установлено, что белковая недостаточность может привести к недостаточности витамина С и биофлаваноидов (витамина Р). Нарушение в печени синтеза холина (группы витаминоподобных веществ) приводит к жировой инфильтрации печени.

При больших физических нагрузках, а также при недостаточном поступлении жиров и углеводов белки участвуют в энергетическом обмене организма.

Белки рациона определяют такие состояния, как алиментарная дистрофия, маразм, квашиоркор. Квашиоркор означает «отнятый от груди ребенок». Им заболевают дети, отнятые от груди и переведенные на углеводистое питание с резкой недостаточностью животного белка. Квашиоркор вызывает как стойкие необратимые изменения конституционального характера, так и изменения личности.

Наиболее тяжелые последствия в состоянии здоровья, нередко на всю жизнь, оставляет такой вид недостаточности питания, как алиментарная дистрофия, чаще всего возникающая при отрицательном энергетическом балансе, когда в энергетические процессы включаются не только пищевые химические вещества, поступающие с пищей, но и собственные, структурные белки организма. В алиментарной дистрофии выделяют отечную и безотечную формы с явлениями или без явлений витаминной недостаточности.

Может сложиться впечатление, что заболевания алиментарного характера возникают только при недостаточном поступлении белка в организм. Это не совсем так! При избыточном поступлении белка у детей первых трех месяцев жизни появляются симптомы дегидратации, гипертермии и явления обменного ацидоза, что резко увеличивает нагрузку на почки. Обычно это возникает, когда при искусственном вскармливании используют неадаптированные молочные смеси, негуманизированные типы молока.

Обменные нарушения в организме могут появиться и при несбалансированности аминокислотного состава поступающих белков.

Заменимые и незаменимые аминокислоты, значение и потребность в них

В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.

1. Алифатические аминокислоты:

а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;

б) оксимоноаминокарбоновые – серин, треонин;

в) моноаминодикарбоновые – аспаргиновая, глютаминовая;

г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;

д) диаминомонокарбоновые – аргинин, лизин;

2. Ароматические аминокислоты: фенилаланин, тирозин.

3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.

Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11-12.

Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.

Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.

Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.

Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.

Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:

1) белки рыбы и молока;

2) белки мяса;

3) белки хлеба и круп.

Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.

Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.

Биологическая роль незаменимых аминокислот

Гистидин играет важную роль в образовании гемоглобина крови. Недостаток гистидина приводит к снижению уровня гемоглобина в крови. При декарбоксилировании гистидин превращается в гистамин – вещество, имеющее большое значение в расширении сосудистой стенки и ее проницаемости, влияет на выделение желудочного пищеварительного сока. Недостаток гистидина, так же как и избыток, ухудшает условно-рефлекторную деятельность.

Валин – физиологическая роль данной НАК недостаточно ясна. При недостаточном поступлении у лабораторных животных отмечаются расстройства координации движений, гиперестезия.

Изолейцин наряду с лейцином входит в состав всех белков организма (за исключением гемоглобина). В плазме крови содержится 0,89 мг% изолейцина. Отсутствие изолейцина в пище приводит к отрицательному азотистому балансу, к замедлению процессов роста и развития.

Лизин относится к одной из наиболее важных незаменимых аминокислот. Он входит в триаду аминокислот, особенно учитываемых при определении общей полноценности питания: триптофан, лизин, метионин. Оптимальное соотношение этих аминокислот составляет: 1: 3: 2 или 1: 3: 3, если взять метионин + цистин (серосодержащие аминокислоты). Недостаток в пище лизина приводит к нарушению кровообращения, снижению количества эритроцитов и уменьшению в них гемоглобина. Также отмечаются нарушение азотистого баланса, истощение мышц, нарушение кальцификации костей. Происходит также ряд изменений в печени и легких. Потребность в лизине составляет 3-5 г в сутки. В значительных количествах лизин содержится в твороге, мясе, рыбе.

Метионин играет важную роль в процессах метилирования и трансметилирования. Это основной донатор метильных групп, которые используются организмом для синтеза холина (витамина группы В). Метионин относится к липотропным веществам. Он оказывает влияние на обмен жиров и фосфолипидов в печени и таким образом играет важную роль в профилактике и лечении атеросклероза. Установлена связь метионина с обменом витамина В 12 и фолиевой кислотой, которые стимулируют отделение метильных групп метионина, обеспечивая таким образом синтез холина в организме. Метионин имеет большое значение для функции надпочечников и необходим для синтеза адреналина. Суточная потребность в метионине составляет около 3 г. Основным источником метионина следует считать молоко и молочные продукты: в 100 г казеина содержится 3 г метионина.

Триптофан, так же как и треонин, – фактор роста и поддержания азотистого равновесия. Участвует в образовании сывороточных белков и гемоглобина. Триптофан необходим для синтеза никотиновой кислоты. Установлено, что из 50 мг триптофана образуется около 1 мг ниацина, в связи с чем 1 мг ниацина или 60 мг триптофана могут быть приняты как единый «ниациновый эквивалент». Суточная потребность в никотиновой кислоте в среднем определена в количестве 14-28 ниациновых эквивалентов, а в расчете на сбалансированную мегакалорию – 6,6 ниациновых эквивалентов. Потребность организма в триптофане составляет 1 г в сутки. В продуктах питания триптофан распределен неравномерно. Так, например, 100 г мяса эквивалентно по содержанию триптофана 500 мл молока. Из растительных продуктов необходимо выделить бобовые. Очень мало триптофана в кукурузе, поэтому в тех районах, где кукуруза является традиционным источником питания, следует проводить профилактические осмотры для определения обеспеченности организма витамином PP.

Фенилаланин связан с функцией щитовидной железы и надпочечников. Он дает ядро для синтеза тироксина – основной аминокислоты, образующей белок щитовидной железы. Из фенилаланина может синтезироваться тирозин и далее адреналин. Однако обратного синтеза из тирозина-фенилаланин не происходит.

Существуют стандарты сбалансированности НАК, разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана – 1, лейцина 4-6, изолейцина 3-4, валина 3-4, треонина 2-3, лизина 3-5, метионина 2-4, фенилаланина 2-4, гистидина 1,5-2.

Заменимые аминокислоты

Потребность организма в заменимых аминокислотах удовлетворяется в основном за счет эндогенного синтеза, или реутилизации. За счет реутилизации образуется 2/3 собственных белков организма. Ориентировочная суточная потребность взрослого человека в основных заменимых аминокислотах следующая (г/сутки): аргинин – 6, цистин – 2-3, тирозин – 3-4, аланин – 3, серин – 3, глутаминовая кислота – 16, аспирагиновая кислота – 6, пролин – 5, глюкокол (глицин) – 3.

Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них (аргинин, цистин, тирозин, глутаминовая кислота) играют физиологическую роль не меньшую, чем незаменимые (эссенциальные) аминокислоты.

Интересны некоторые аспекты использования заменимых аминокислот в пищевой промышленности, например глутаминовой кислоты. В наибольших количествах она содержится только в свежих пищевых продуктах. По мере хранения или консервирования пищевых продуктов глутаминовая кислота в них разрушается, и продукты теряют свойственные им ароматы и вкус. В промышленности чаще используют натриевую соль глутаминовой кислоты. В Японии глутаминат натрия называют «Аджино мотто» – сущность вкуса. Пищевые продукты опрыскивают 1,5-5%-ным раствором глутамината натрия, и они долго сохраняют аромат свежести. Поскольку глутаминат натрия обладает антиокислительными свойствами, то пищевые продукты могут храниться более длительные сроки.

Потребность в белках зависит от возраста, пола, характера трудовой деятельности, климатических и национальных особенностей и т. д. Исследованиями установлено, что азотистое равновесие в организме взрослого человека поддерживается при поступлении не менее 55-60 г белка, однако эта величина не учитывает стрессовые ситуации, болезни, интенсивные физические нагрузки. В связи с этим в нашей стране установлена оптимальная потребность взрослого человека в белке 90-100 г/сутки. При этом в пищевом рационе за счет белка должно обеспечиваться в среднем 11-13 % общей его энергетической ценности, а в процентном отношении белок животного происхождения должен составлять не менее 55 %.

Американскими и шведскими учеными установлены ультраминимальные нормы потребления белков на основании эндогенного распада тканевых белков при безбелковых диетах: 20-25 г/сутки. Однако такие нормы при постоянном использовании не удовлетворяют потребности организма человека и не обеспечивают нормальной работоспособности, так как при распаде тканевых белков образующиеся аминокислоты, используемые в дальнейшем для ресинтеза белка, не могут обеспечить должную замену животного белка, поступающего с пищей, и это приводит к отрицательному азотистому балансу.

Энергетическая потребность людей первой группы интенсивности труда (группа умственного труда) составляет 2500 ккал. 13 % от этой величины составляет 325 ккал. Таким образом, потребность в белке у студентов составляет приблизительно 80 г (325 ккал: 4 ккал = 81,25 г) белка.

У детей потребность в белках определяется возрастными нормами. Количество белка из-за преобладания в организме пластических процессов на 1 кг массы тела увеличено. В среднем эта величина составляет 4 г/кг у детей от 1 до 3 лет жизни, 3,5 -4 г/кг для детей 3-7 лет, 3 г/кг – для детей 8-10 лет и детей старше 11 лет – 2,5-2 г/кг, в то время как в среднем у взрослых 1,2-1,5 г/кг в сутки.

Значение жиров в питании здорового человека

Жиры относятся к основным питательным веществам и являются обязательным компонентом в сбалансированном питании.

Физиологическое значение жира весьма многообразно. Жиры является источником энергии, превосходящей энергию всех других пищевых веществ. При сгорании 1 г жира образуется 9 ккал, тогда как при сгорании 1 г углеводов или белков – по 4 ккал. Жиры участвуют в пластических процессах, являясь структурной частью клеток и их мембранных систем.

Жиры являются растворителями витаминов А, Е, D и способствуют их усвоению. С жирами поступает ряд биологически ценных веществ: фосфолипиды (лецитин), ПНЖК, стерины и токоферолы и другие биологически активные вещества. Жир улучшает вкусовые свойства пищи, а также повышает ее питательность.

Недостаточное поступление жира приводит к нарушениям в центральной нервной системе ослаблению иммунобиологических механизмов, дегенеративным нарушениям функции кожи, почек, органа зрения и др.

В составе жира и сопутствующих ему веществ выявлены эссеециальные, жизненно необходимые незаменимые компоненты, в том числе липотропного, антиатеросклеротического действия (ПНЖК, лецитин, витамины А, Е и др.).

Жир оказывает влияние на проницаемость клеточной стенки, состояние ее внутренних элементов, что способствует сбережению белка. В целом от уровня сбалансированности жира с другими пищевыми веществами зависят интенсивность и характер многих процессов, протекающих в организме, связанных с обменом и усвоением пищевых веществ.

По химическому составу жиры представляют собой сложные комплексы органических соединений, основными структурными компонентами которых являются глицерин и жирные кислоты. Удельный вес глицерина в составе жира незначителен и составляет 10 %. Основное значение, определяющее свойства жиров, имеют жирные кислоты. Они подразделяются на предельные (насыщенные) и непредельные (ненасыщенные).

Состав жиров

Предельные (насыщенные) жирные кислоты чаще встречаются в составе животных жиров. Высокомолекулярные насыщенные кислоты (стеариновая, арахиновая, пальмитиновая) обладают твердой консистенцией, низкомолекулярные (масляная, капроновая и др.) – жидкой. От молярной массы зависит и температура плавления: чем выше молярная масса насыщенных жирных кислот, тем выше температура их плавления.

По биологическим свойствам предельные жирные кислоты уступают непредельным. С предельными (насыщенными) жирными кислотами связывают представления об отрицательном их влиянии на жировой обмен, на функцию и состояние печени, а также развитие атеросклероза (за счет поступления холестерина).

Непредельные (ненасыщенные) жирные кислоты широко представлены во всех пищевых жирах, особенно в растительных маслах. Наиболее часто в составе пищевых жиров встречаются непредельные кислоты с одной, двумя и тремя двойными ненасыщенными связями. Это обуславливает их способность вступать в реакции окисления и присоединения. Реакции присоединения водорода (насыщения) используют в пищевой промышленности при получении маргарина. Легкая окисляемость ненасыщенных жирных кислот приводит к накоплению окисленных продуктов и последующей их порче.

Типичный представитель ненасыщенных жирных кислот с одной связью – олеиновая кислота, которая находится почти во всех животных и растительных жирах. Она играет важную роль в нормализации жирового и холестеринового обмена.

Полиненасыщенные (эссенциальные) жирные кислоты

К ПНЖК относят жирные кислоты, содержащие несколько двойных связей. Линолевая имеет две двойные, линоленовая – три, а арахидоновая – четыре двойные связи. Высоконепредельные ПНЖК рассматриваются некоторыми исследователями как витамин F.

ПНЖК принимают участие в качестве структурных элементов высокоактивных в биологическом отношении комплексов – фосфолипидов и липопротеидов. ПНЖК – необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и др.

Синтез жирных кислот, необходимых для структурных липидов организма, происходит преимущественно за счет ПНЖК пищи. Биологическая роль линоленовой кислоты заключается в том, что она предшествует в организме биосинтезу арахидоновой кислоты. Последняя в свою очередь предшествует образованию простагландинов – тканевых гормонов.

Установлена важная роль ПНЖК в холестериновом обмене. При недостаточности ПНЖК происходит этерификация холестерина с насыщенными жирными кислотами, что способствует формированию атеросклеротического процесса.

При недостатке ПНЖК снижаются интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, появляется склонность к возникновению тромбоза коронарных сосудов. ПНЖК оказывают нормализующее действие на клеточную стенку кровеносных сосудов, повышая ее эластичность и снижая проницаемость.

ПНЖК являются эссенциальными несинтезируемыми веществами, но превращение одних жирных кислот в другие возможно.

Оптимальной в биологическом отношении формулой сбалансированности жирных кислот в жире может служить следующее соотношение: 10 % ПНЖК, 30 % насыщенных жирных кислот и 60 % мононенасыщенной (олеиновой) кислоты.

Суточная потребность в ПНЖК при сбалансированном питании составляет 2-6 г, что обеспечивается 25-30 г растительного масла.

Фосфолипиды – биологически активные вещества, входящие в структуру клеточных мембран и участвующие в транспорте жира в организме. В молекуле фосфолипидов глицерин этерифицирован ненасыщенными жирными кислотами и фосфорной кислотой. Типичным представителем фосфолипидов в продуктах питания является лецитин, хотя схожим биологическим действием обладают кефалин и сфингомиелин.

Фосфолипиды представлены в нервной ткани, ткани мозга, сердца, печени. Фосфолипиды синтезируются в организме в печени и почках.

Лецитин участвует в регулировании холестеринового обмена, способствуя его расщеплению и выведению из организма. В норме его содержание в крови 150-200 мг%, а коэффициент лецитин / холестерин равен 0,9-1,4. Потребность в фосфолипидах составляет для взрослого человека 5 г в сутки и удовлетворяется за счет эндогенных фосфолипидов, образующихся из предшественников полной деградации.

Фосфолипиды особенно важны в питании пожилых людей, так как обладают выраженным липотропным, антиатеросклеротическим действием.

Стерины – гидроароматические спирты сложного строения, относящиеся к группе неомыляемых веществ нейтрального характера. Содержание в животных жирах – зоостерины – 0,2-0,5 г на 100 г продукта, в растительных – фотостерины – 6,0-17,0 г на 100 г продукта.

Фитостерины играют важную роль в нормализации холестеринового и жирового обмена. Их представителями являются ситостерины, образующие нерастворимые невсасывающие комплексы с холестерином. Основным источником?-ситостерина, применяемого с лечебной и профилактической целью при атеросклерозе, являются кукурузное масло (400 мг на 100 г масла), хлопковое (400 мг), соевое, арахисовое, оливковое (по 300 мг) и подсолнечное масло (200 мг).

Холестерин рассматривают и как фактор, участвующий в формировании и развитии атеросклероза. Однако имеются исследования, выдвигающие здесь на первый план повышенное потребление животных жиров, богатых твердыми, насыщенными жирными кислотами.

Основной биосинтез холестерина происходит в печени и зависит от характера поступающего жира. При поступлении насыщенных жирных кислот биосинтез холестерина в печени повышается и, наоборот, при поступлении ПНЖК – снижается.

В состав жиров входят также витамины A, D, Е, а также пигменты, часть которых обладает биологической активностью (каротин, госсипол и др.).

Потребность в нормировании жиров

Суточная потребность взрослого человека в жирах составляет 80-100 г/сутки, в том числе растительного масла – 25-30 г, ПНЖК – 3-6 г, холестерина – 1 г, фосфолипидов – 5 г. В пище жир должен обеспечить 33 % суточной энергетической ценности рациона. Это для средней зоны страны, в северной климатической зоне эта величина составляет 38-40 %, а в южной – 27-28 %.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Раздел 1. Физиологическая роль белка

1.1 Структурная функция белков

1.2 Обмен белков в организме человека

1.3 Азотистое равновесие

Раздел 2. Белковый обмен при различных состояниях организма

2.1 Обмен белков при мышечной деятельности

2.2 Нарушение аминокислотного обмена

Введение

Важнейшим компонентом питания являются белки. Белки представляют основу структурных элементов клетки и тканей. С белками связаны основные проявления жизни: обмен веществ, сокращения мышц, раздражимость нервов, способность к росту, размножению, мышлению. Связывая значительные количества воды, белки образуют плотные коллоидные структуры, определяющие конфигурацию тела. Помимо структурных белков, к белковым веществам относятся гемоглобин - переносчик кислорода в крови, ферменты -важнейшие ускорители биохимических реакций, некоторые гормоны, нуклеопротеиды - определяющие направление синтеза белка в организме, являющиеся носителями наследственных свойств.

Полноценный белок состоит из 20 аминокислот, сочетание которых в молекулах белка может обусловить их огромное разнообразие. Единственным источником образования белков в организме являются аминокислоты белков пищи. О полноценности снабжения организма белком судят по показателям азотистого баланса.

Белки являются единственным источником усвояемого организмом азота. Учитывая количества поступающего с пищей и выделяющегося из организма азота, можно судить о благополучии или нарушении белкового обмена. В организме взрослых здоровых людей, наблюдается азотистое равновесие, это когда количество поступающего с пищей азота" уравнивается с количеством азота, выделяемого из организма. У детей азотистый баланс характеризуется накоплением белков в теле. При этом количество поступающего, с пищей азота значительно превышает его выделение с продуктами распада. В этом случае положительный азотистом баланс. Положительный азотистый баланс наблюдается в организме ребенка, юноши и девушки.

У людей, получающих недостаточное количество белка с пищей или у тяжелобольных, в организме которых белок усваивается плохо, наблюдается потеря азота, то есть отрицательный азотистые баланс. Для взрослого человека минимальная норма составляет 40-50г усеваемого белка в день. Если работа не связана с интенсивным физическим трудом, организм взрослого человека в среднем нуждается в получении с пищей примерно 1-1,2г белка на 1кг веса тела. Это означает, что человек, весящий 70-75кг, должен получать от 70 до 90г белка в сутки. С увеличением интенсивности физического труда возрастают и потребности организма в белке.

Пищевая ценность белков различных видов зависит от их аминокислотного состава. Полноценный белок состоящий из 20 аминокислот имеют лишь 8, которые являются незаменимыми в питании для взрослого человека (и на одну больше для ребенка раннего возраста). - Незаменимые аминокислоты не синтезируются в организме и должны обязательно в определенных количествах поступать в организм с пищей. В соответствии с концепцией сбалансированного питания можно назвать следующие величины, характеризующие минимальные потребности в каждой из незаменимых аминокислот для организма взрослого человека и их оптимальные соотношения, обеспечивающие использования белка.

Если какого-либо: из аминокислот в белках пищи будет меньше, то он не будет синтезироваться, но тогда и другие аминокислоты не могут быть полностью использованы организмом. Аминокислотный состав белков яиц был принят за идеальный, так как их усвоение организмом человека приближается к 100%. Очень высока степень усвоения и других продуктов животного происхождения: молока (75-80%), мяса (70-75%), рыбы (70-80%) и т.д.

Многие растительные продукты, особенно злаковые, содержат белки пониженной биологической ценности. В большинстве растительных материалов обнаруживается недостаток серосодержащих аминокислот.

Раздел 1. Физиологическая роль белка

1.1 Структурная функция белка

Белки сложные органические соединения, построенные из аминокислот. В состав белковых молекул входят азот, углерод, водород и некоторые другие вещества. Аминокислоты характеризуются наличием в них аминогруппы (NH2).

Белки отличаются друг от друга по содержанию в них разных аминокислот. В связи с этим белки обладают специфичностью, т. е. выполняют разные функции. Белки животных разных видов, разных индивидуумов одного и того же вида, а также белки разных органов и тканей одного организма отличаются друг от друга. Специфичность белков позволяет вводить их в организм лишь через органы пищеварения, где они расщепляются до аминокислот и в таком виде всасываются в кровь. В тканях из доставляемых кровью аминокислот образуются белки, свойственные данным тканям. Белки являются основным материалом, из которого построены клетки организма (Абрамова Т. 1994)

Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в отдельных случаях несколько, как правило, взаимосвязанных функций. Об одной из центральных функций, участии их в подавляющем большинстве химических превращений в качестве ферментов или важнейшего компонента ферментов. Ферменты в большинстве своем обеспечивают протекание необходимых для жизнедеятельности процессов при невысоких температурах и рН, близких к нейтральным.

Самая большая функциональная группа белков - ферменты. Каждый фермент в той или иной степени специфичен, т.е. функционально приспособлен к какому-то определенному субстрату, иногда к определенному типу химических связей. Под влиянием различных воздействий структура белковой молекулы может меняться, в связи с чем меняется и активность фермента. Например, существует зависимость скорости ферментативной реакции от изменения температуре и рН.

Некоторые биологические молекулы способны ускорять или ингибировать (от лат. inhibere - сдерживать, останавливать), т. е. подавлять активность ферментов - это один из способов регуляции ферментативных реакций. (Комов В.П. 2004)

Белки являются химическими структурами, представляющими собой линейную последовательность аминокислот, сформировавшуюся в ходе серии реакций конденсации, в которых задействованы а-карбоксильная и а-аминная группы смежных аминокислот. Образующиеся в результат этих реакций связи называются пептидными. Две аминокислоты образуют дипептид, а более длинные цепи - полипептиды. Каждая полипептидная цепь имеет одно аминное и одно карбоксильное окончание, которые могут образовывать последующие пептидные связи с другими аминокислотами. Многие белки состоят из более чем одной полипептидной цепи, каждая из которых формирует субъединицу. Порядок, в котором аминокислоты располагаются в цепи, определяется в процессе белкового синтеза последовательностью нуклеотидных оснований в специфической ДНК, содержащей генетическую информацию, относящуюся к этому белку. Последовательность аминокислот детерминирует окончательную структуру, поскольку боковые цепи компонента аминокислот притягиваются, отталкиваются либо служат физическим препятствием друг для друга, что «заставляет» молекулу складываться и принимать окончательную, соответствующую ей форму. Первичная структура белка - это определенная последовательность аминокислот в полипептидной цепи, а также их количественный и качественный состав. Последовательность расположения аминокислот в отдельных белках генетически закреплена и обусловливает индивидуальную и видовую специфичность белка. Расшифровка первичной структуры белка имеет большое практическое значение, так как открывает возможность синтеза его в лаборатории. Благодаря расшифровке структуры гормона инсулина и иммуноглобулина эти белки получают синтетически и широко применяют в медицине. Изучение первичной структуры гемоглобина позволило выявить изменения его структуры у людей при отдельных заболеваниях. В настоящее время расшифрована первичная структура более 1000 белков, в том числе ферментов рибонуклеазы, карбоксипептидазы, миоглобина, цитхромо в и многих других.

Вторичная структура белка - это пространственная укладка полипептидной цепи. Выделяют три типа вторичной структуры: а-спираль, слоистоскладчатая спираль (или В-спираль) и коллагеновая спираль.

При образовании а-спирали полипептидная цепь спирализуется за счет водородных связей таким образом, что витки пептидной цепи периодически повторяются. При этом создается компактная и прочная структура полипептидной цепи белка.

Слоисто-складчатая структура белка представляет собой линейные полипептидные цепи, расположенные параллельно и прочно связанные водородными связями. Такая структура является основой для фибриллярных белков.

Коллагеновая спираль белка выделяется более сложной укладкой полипептидных цепей. Отдельные цепи спирализованы и закручены одна вокруг другой, образуя суперспираль. Такая структура характерна для коллагена. Коллагеновая спираль имеет высокую упругость и прочность стальной нити. («Основы биохимии» 1986)

Третичная структура Общее расположение, взаимную укладку различных областей, доменов и отдельных аминокислотных остатков одиночной полипептидной цепи называют третичной структурой данного белка. Четкой границы между вторичной и третичной структурами провести нельзя, однако под третичной структурой понимают стерические взаимосвязи между аминокислотными остатками, далеко отстоящими друг от друга по цепи. Четвертичная структура если белки состоят из двух и более полипептидных цепей, связанных между собой не ковалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой. Такие агрегаты стабилизируются водородными связями и электростатическими взаимодействиями между остатками, находящимися на поверхности полипептидных цепей. Подобные белки называют олигомерами, а составляющие их индивидуальные полипептидные цепи-протомерами, мономерами или субъединицами.

Многие олигомерные белки содержат два или четыре протомера и называются димерами или тетрамерами соответственно. Довольно часто встречаются олигомеры, содержащие более четырех протомеров, особенно среди регуляторных белков (пример - транскарбамоилаза). Олигомерные белки играют особую роль во внутриклеточной регуляции: их протомеры могут слегка менять взаимную ориентацию, что приводит к изменению свойств олигомера.

Структурная функция белков или пластическая, функция белков заключается в том, что протеины являются главной составной частью всех клеток и межклеточных структур. Белки также входят в состав основного вещества хрящей, костей и кожи. Биосинтез белков определяет рост и развитие организма.

Каталитическая или ферментная, функция белков состоит в том, что протеины способны ускорять биохимические реакции в организме. Все известные в настоящее время ферменты являются белками. От активности белков-ферментов зависит осуществление всех видов обмена веществ в организме.

Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.

Транспортная функция белков заключается в том, что белки принимают участие в переносе многих веществ. Так, снабжение клеток кислородом и удаление углекислого газа из организма осуществляется сложным белком-гемоглобином, липопротеиды обеспечивают транспорт жиров и т.д.

Передача наследственных свойств в которой ведущую роль играют нуклеопротеиды, является одной из важнейших функций белков. В состав нуклеопротеидов входят нуклеиновые кислоты. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК), содержащие аденин, цитозин, урацил, рибозу и фосфорную кислоту, и дезоксирибонуклеиновые кислоты (ДНК), в состав которых входят дезоксирибоза вместо рибозы и тимин вместо урацила. Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белков. Нуклеиновые кислоты не только необходимы для самого процесса биосинтеза белка, они обеспечивают также образование белков, специфичных для данного вида и органа.

Регуляторная функция белков направлена на поддержание биологических констант в организме, что обеспечивается регулирующими влияниями различных гормонов белковой природы.

Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека Белки-ферменты определяют все стороны обмена веществ и образование энергии не только из самих протеинов, но и из углеводов и жиров. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал).

Белковые тела различных людей имеют индивидуальную специфичность. Это значит что, образование иммунных тел в организме человека при пересадке органов, в результате чего может возникнуть реакция отторжения пересаженного органа.

Индивидуальные различия в составе белков передаются по наследству. Нарушение генетического кода в ряде случаев может явиться причиной тяжелых наследственных заболеваний (Косицкий Г.И. 1985).

1.2 Обмен белков в организме человека

Важный критерий пищевой ценности белков - доступность аминокислот. Аминокислоты большинства животных белков полностью высвобождаются в процессе пищеварения. Исключение составляют белки опорных тканей (коллаген и эластин). Белки растительного происхождения перевариваются в организме плохо, т.к. содержат много волокон и иногда ингибиторы

В зависимости от содержания заменимых и незаменимых аминокислот белки делят на полноценные и неполноценные. Белки, которые содержат все необходимые организму аминокислоты и в необходимых количествах, называют биологически полноценными. Наиболее высока биологическая ценность белков мяса, молока, яиц, рыбы, икры. Белки, в которых отсутствует та или иная аминокислота или содержится, но в недостаточном количестве, называют биологически неполноценными

В организме постоянно происходит распад белков. Разрушаются старые клетки, образуются новые. Поэтому организм нуждается в постоянном поступлении белка с пищей. Потребность в белке резко возрастает у детей в период усиленного роста организма, у беременных женщин, в период выздоровления после тяжелой болезни, во время усиленной спортивной тренировки.

Белки расщепляются в пищеварительном тракте до аминокислот и низкомолекулярных полипептидов, которые всасываются в кровь. С током крови они поступают в печень, где часть из них подвергается дезаминированию и переаминированию; эти процессы обеспечивают синтез некоторых аминокислот и белков. Из печени аминокислоты поступают в ткани тела, где используются для синтеза белка. Избыток белка, поступившего с пищей, превращается в углеводы и жиры. Конечные продукты распада белков - мочевина, аммиак, мочевая кислота, креатинин и другие - выводятся из организма с мочой и потом. (Чусов Ю.Н. 1998)

Белки сложны по своему строению и весьма специфичны. Белки, содержащиеся в пище, и белки в составе нашего тела значительно отличаются по своим качествам. Если белок извлечь из пищи и ввести непосредственно в кровь, то человек может погибнуть. Белки состоят из белковых элементов - аминокислот, которые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. В состав клеток живого организма входит более 20 типов аминокислот. В клетках непрерывно протекают процессы синтеза огромных белковых молекул, состоящих из цепочек аминокислот. Сочетание этих аминокислот (всех или части из них), соединенных в цепочки в разной последовательности, и обуславливает бесчисленное количество разнообразных белков.

Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные.

В тканях и клетках непрерывно идет разрушение и синтез белковых структур. В условно здоровом организме взрослого человека количество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое значение, разработано много методов его изучения. Баланс белка определяется разностью между количеством белка, поступившего с пищей, и количеством белка, подвергшегося за это время разрушению. Содержание белка в пищевых продуктах различно.

Обмен веществ в организме регулируется нервными центрами, расположенными в области промежуточного мозга. При повреждении некоторых ядер этого отдела мозга усиливается белковый обмен, его баланс становится отрицательным, вследствие чего наступает резкое истощение. Нервная система влияет на белковый обмен через гормоны щитовидной железы, передней доли гипофиза (соматотропный гормон) и других желез внутренней секреции. В процессах жизнедеятельности организма белкам принадлежит особая роль, так как ни углеводы, ни липиды не могут их заменить в воспроизводстве основных структурных элементов клетки, а также в образовании таких важнейших веществ, как ферменты и гормоны. Однако синтез белка из неоргани-

Белки играют в питании человека чрезвычайно важную роль, так как они являются главной составной частью клеток всех органов и тканей организма.

Основное назначение белков пищи - это построение новых клеток и тканей, обеспечивающих развитие молодых растущих организмов. В зрелом возрасте, когда процессы роста уже полностью завершены, остается потребность в регенерации изношенных, отживших клеток. Для этой цели требуется белок, причем пропорционально изнашиваемости тканей. Установлено, что чем выше мышечная нагрузка, тем больше потребности в регенерации и соответственно в белке.

Белки - сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты.

Белки в организме человека выполняют несколько важных функций - пластическую, каталитическую, гормональную, функцию специфичности и транспортную. Важнейшей функцией пищевых белков является обеспечение организма пластическим материалом. Организм человека практически лишен резервов белка. Единственным источником их являются белки пищи, вследствие чего они относятся к незаменимым компонентам рациона.

Во многих странах население испытывает дефицит в белках. В связи с этим важной задачей становится поиск новых нетрадиционных способов его получения.

Среди растительных продуктов значительным содержанием белка отличаются бобовые. До периода культивирования картофеля в Европе бобовые растения составляли одну из основных частей пищи населения. До сих пор во многих странах бобы, фасоль, горох культивируются на больших площадях. Белки сои богаты всеми незаменимыми аминокислотами, скор которых равен или превышает 100 % по шкале ВОЗ; исключение составляют серосодержащие аминокислоты (скор 71 %). Усвояемость соевых белков равна 90, 7 %. По анаболической эффективности они не уступают белкам животного происхождения.

Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.

Человек получает белок с пищей. При введении чужеродных белковых веществ непосредственно в кровь, минуя пищеварительный тракт, они не только не могут быть использованы организмом, но и приводят к ряду серьезных осложнений (повышение температуры, судороги и другие явления). При повторном введении чужеродного белка в кровь через 15-20 дней может наступить смерть. (Солодков А.С. 2001)

При отсутствии полноценного белкового питания тормозится рост, нарушается формирование скелета. При белковом голодании вначале происходит усиленный распад протеинов скелетной мускулатуры, печени, крови, кишечника, кожи. Аминокислоты, которые при этом освобождаются, используются для синтеза белков центральной нервной системы, миокарда, гормонов. Однако такое перераспределение аминокислот не может восполнить недостаток пищевого белка, и наступает закономерное снижение активности ферментов, нарушаются функции печени, почек и т. д.

Синтез белков без витаминов группы В заметно снижается. Жиры участвуют в транспортировании белков. Белки различных пищевых продуктов отличаются друг от друга по аминокислотному составу, но в сумме дополняют друг друга. Поэтому для обеспечения организма всем спектром аминокислот в питании человека следует использовать широкий ассортимент белковых продуктов животного и растительного происхождения. Для снабжения организма оптимальным аминокислотным составом можно использовать различные белковые комбинации. Например: ватрушки с творогом, пирожки с мясом, молочная рисовая каша. От биологической ценности белков, используемых в питании, зависит их необходимое количество для удовлетворения потребностей организма.

Чем лучше аминокислотный состав белка, тем быстрее он переваривается и усваивается, тем меньшее количество его требуется. Высокой видоспецифичностью белков, входящих в состав органов и тканей, можно объяснить тот факт, что в условиях полного голодания в организме взрослого человека расщепляется 22-24 г тканевых белков для покрытия минимальных физиологических затрат с образованием отрицательного азотного баланса. Для ресинтеза этого количества белка необходимо ввести с пищей 50-70 г белка. Это большая разница зависит от биологической ценности белков. Недостаточное содержание белков в рационе человека ведет к распаду тканевых белков, что приводит в конечном счете к отрицательному азотному балансу, истощению организма. Это проявляется в виде задержки роста и умственного развития у детей, понижения условно-рефлекторной возбудимости ЦНС, снижения устойчивости к стрессам и инфекциям, угнетения гормональной деятельности, дефицита массы тела, жировой инфильтрации печени, плохой заживляемости ран, снижения иммунитета. Дефицит белков способствует развитию пеллагры, которая проявляется трофическими нарушениями, мышечной слабостью, отеками. На фоне белковой недостаточности у детей развивается заболевание квашиоркор Его симптомы: отеки, задержка роста, остеопороз, мышечная слабость, поносы, полиурия.

Алиментарная белковая недостаточность может возникать при нарушении принципов рационального питания, на фоне острых и хронических заболеваний кишечника, других органов и систем. При нарушении процессов пищеварения ухудшается всасывание и усвоение жиров и углеводов, а это способствует усиленному распаду белка для восполнения энерготрат. Повышенный расход белка возникает при инфекционных заболеваниях, туберкулезе, травмах, операциях, ожогах, опухолевых процессах, массивных кровопотерях. Предотвратить белковую недостаточность может специальная диета.

В то же время для организма вреден и избыток белка в питании. При избыточном употреблении белка с пищей в организме усиливаются гнилостные процессы в кишечнике, происходит перенапряжение в деятельности печени и почек из-за продуктов белкового метаболизма, перенапряжение секреторнойфункции пищеварительных желез.

Потребность в белках для взрослых 1 г на 1 кг нормальной массы тела в день, в среднем 70 г в день. Животные белки должны составлять 50-55% от общего количества белка.

Потребность в белке увеличивается до 100-120 г в день в период выздоровления после тяжелых инфекций, переломов, заболеваниях органов пищеварения, нагноительных заболеваниях легких, прием кортикостероидных и анаболических гормонов. Белок ограничивают при остром нефрите, недостаточности почек и печени, подагре и некоторых других заболеваниях. (Баешко А.А. 1999).

В пищеварительном тракте белки расщепляются ферментами до аминокислот и в тонком кишечнике происходит их всасывание. Одновременно с аминокислотами могут частично всасываться и простейшие пептиды. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот.

Биологическая ценность белков. В разных природных источниках белка (растительных и животных) насчитывается более 80 аминокислот. В пищевых продуктах, которые использует человек, содержится только 20 аминокислот.

У человека постоянно поддерживается относительное белковое равновесие, т. е. сколько расходуется белка, столько и должно поступить с пищей. О количестве расщепляющегося белка можно судить по количеству выведенного из организма азота, так как в других питательных веществах он почти не содержится. О белковом равновесии в организме судят по азотистому балансу, т. е. по соотношению количества азота, введенного в организм, и азота, выведенного из него. Если это, количество одинаково, то такое состояние называется азотистым равновесием, иди балансом. Оно наблюдается у взрослого здорового, нормально питающегося человека. Состояние, при котором усвоение азота превышает его выведение, называется положительным азотистым балансом. Оно характерно для растущего организма, а также для спортсменов, тренировка которых направлена на развитие скелетных мышц, их силовых качеств. При некоторых заболеваниях и при голодании азота усваивается меньше, чем тратится. Такое состояние называется отрицательным азотистым балансом. Нормальная жизнедеятельность организма возможна лишь при азотистом равновесии или положительном азотистом балансе.

1.3 Азотистое равновесие

Азотистое равновесие - это соотношение между количеством азота, содержащегося в принятой пище, и количеством азота, выведенного из организма. Если обе эти величины равны, организм находится в состоянии азотистого равновесия. Когда в организме происходит расщепление тканевых белков без полного их восстановления, наступает отрицательный азотистый баланс - из организма азота выводится больше, чем поступает. Отрицательный нательный азотистый баланс наблюдается при полном и частичном белковом голодании, а также при некоторых заболеваниях, сопровождающихся увеличением тканевого распада у взрослого человека при полном голодании выделяется в среднем за сутки 3,71 г азота. Это соответствует 23,2 г распадающегося белка. Нормальная жизнедеятельность взрослого организма возможно лишь при азотистом равновесии или при положительном азотистом балансе. Азотистое равновесие наступает, когда в организм введено 60-70 г белка при условии достаточного поступления жиров и углеводов. Это количество белка есть белковая оптимальная суточная норма белка в питании взрослого человека значительно выше белкового минимума и колеблется в зависимости от интенсивности обмена веществ и от характера производимого труда. Для лиц, не занимающихся физическим трудом, белковый оптимум в среднем равен 109 г. При физическом механизированном труде белковая норма должна увеличена в среднем до 122 г. Для лиц физического труда механизированном или не полностью механизированного белковая норма в среднем колеблется от 140 до 163 г. Когда человек занимается спортом, у него повышается обмен и усиливается расщепление и синтез тканевых белков. Потребность в пищевом белке увеличивается, достигая 150-160г в зависимости от вкусов и привычек каждого спортсмена содержание белка в пищевом рационе может колебаться но ни при каких условиях суточное потребление недолжно быть ниже 1,5г на 1 кг веса По данным некоторых авторов, животные белки имеют особенно большое значение для лиц занимающихся силовыми и скоростными упражнениями.

Стремление некоторых спортсменов потреблять большие количества белка (до 250 и даже 300 г в сутки) физиологически не оправдывается. При избыточном поступлении в организм белка его безазотистые компоненты используются как энергетические материалы, А компоненты, содержащие азот, превращаются в вещества не только не безразличные, но даже и вредные для органа. Так, например аммиак, образующийся из аминокислот, ядовитое для организма вещество. Наибольший эффект наблюдается, когда белки в организм вводятся непосредственно после тренировочного занятия или даже лучше до него. В последнем случае нарастание массы и силы работающих мышц происходит наиболее эффективно. (Шмидт 1983).

Азотистое равновесие. О количестве белка, получаемого с пищей или выделяемого из организма, можно судить по количеству потребленного или выделенного азота. Из питательных веществ только белки содержат азот. Известно, что его количество в белке составляет 16%. Отсюда легко вычислить, что 1 г азота содержится в 6,25 г белка (100: 16). Отсюда, зная количество выделенного или потребленного азота, легко рассчитать соответствующее количество белка.

Понятие «азотистый баланс» означает разницу в количестве азота, введенного в организм с пищей и выведенного с мочой, калом и потом. Дня здорового взрослого человека характерно азотистое равновесие, при котором азотистый баланс равен 0.

Биологическая ценность белков. Различают биологически полноценные и неполноценные белки. Степень ценности белка определяется количеством аминокислот, необходимых для нормального протекания в организме процессов синтеза. Белки, которые содержат в определенном соотношении все необходимые для этого аминокислоты, называют полноценными, а белки, в которых нет нужного набора аминокислот, - неполноценными. К последним относят, например, белок кукурузы и ячменя.

В пищеварительном тракте белки подвергаются распаду до аминокислот, которые всасываются в кровь. Пройдя через сосуды печени, аминокислоты приносятся ко всем органам, в клетках которых вновь синтезируется белок, но уже специфичный для, каждого из них. Для синтеза белка используются также аминокислоты, пептиды и нуклеотидпептиды, образующиеся в процессе распада клеточных белков. Нуклеотидпептидом называют продукт неполного распада белка, состоящий из пептидов и нуклеотидной группировки. Для синтеза белка используются также аминокислоты, которые синтезируются в организме. В организме из продуктов распада белков одного вида могут синтезироваться белки другого вида.

Интенсивность синтеза белка довольно высока. Ежесуточно в развивающемся организме человека синтезируется 100 г белков. Однако не все аминокислоты, образовавшиеся при распаде белка, используются для его синтеза. Часть аминокислот подвергается распаду, конечными продуктами которого являются NH3, СО2 и Н2О. Обезвреживание аммиака осуществляется также в печени посредством синтеза мочевины - вещества, относительно безвредного для организма, удаляемого с мочой. Продукты неполного распада одних аминокислот могут использоваться в организме в качестве строительного материала для синтеза других аминокислот. В организме постоянно происходят синтез и распад не только простых белков, но и сложных.

Конечными продуктами обмена нуклеопротеидов являются мочевина, мочевая кислота, углекислый газ и вода. Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.

Окисление аминокислот происходит путем отщепления от них азота в виде аммиака. Аммиак является очень токсичным веществом для центральной нервной системы и других тканей организма. Однако аммиак обезвреживается в тканях печени и мозга: в печени путем образования мочевины, в ткани мозга за счет превращения в глутамин.

В крови печеночной вены содержится втрое меньше аммиака, чем в воротной вене. Следовательно, в печени значительная часть аммиака превращается в мочевину. Удаление печени приводит к гибели от аммиачного отравления. Мочевина же представляет собой относительно безвредный продукт и выводится из организма с мочой.

Часть аммиака обезвреживается путем превращения в глутаминовую кислоту и глутамин. В крови здоровых людей циркулирует лишь незначительное количество аммиака.

При нарушении синтеза мочевины в печени увеличивается концентрация аммиака, аминокислот и полипептидов в крови, что вызывает возбуждение центральной нервной системы, появление судорог, спутанность сознания и даже коматозное состояние и смерть. (Шмидт Р. 1983)

Раздел 2. Белковый обмен при различных состояниях организма

2 .1. Обмен белков при мышечной деятельности

Белки - основной материал для построения клеток и тканей. В рационе юного спортсмена, организм которого растет и формируется, количество белковой пищи должно быть достаточным - более 3 г в сутки на каждый килограмм массы тела. С возрастом эта величина уменьшается: так, в 15-17-летнем возрасте достаточно 2,5 г, а с 18 лет - 2,0 г и меньше на 1 кг массы тела. Источником белка являются мясо, рыба, яйца, сыры, молоко, горох, бобы, фасоль, гречневая и другие крупы. (Смирнов В.М. 2002)

Белки вносят незначительный вклад в энергетику мышечной деятельности, поскольку обеспечивают только 10-15 % общего энергопотребления организма. Тем не менее они играют важную роль в обеспечении сократительной функции скелетных мышц и сердца, в формировании долговременной адаптации к физическим нагрузкам, создании определенного композиционного состава мышц.

Физические нагрузки вызывают изменения в процессах синтеза и распада белков в тканях, особенно в скелетных мышцах и печени, степень им раженности которых зависит от интенсивности и длительности физических нагрузок, а также от тренированности организма. Изменение внутритканевого обмена белков определяют обычно по концентрации в крови отдельных незаменимых аминокислот, которые в организме не синтезируются и образуются при распаде тканевых белков. В качестве специфическою показателя распада сократительных белков актина и миозина используется-3-метилгистидин.

Однократные физические нагрузки вызывают угнетение синтеза белка и усиление их катаболизма. Так, например, при беге на тредмиле в течение часа скорость синтеза белка в печени снижалась на 20 %, а при предельной работе - на 65 %. Такая закономерность наблюдается и в скелетных мышцах.

Под воздействием физических нагрузок усиливается распад мышечных белков (преимущественно структурных), хотя отдельные виды нагрузок усиливают распад и сократительных белков.

При систематических физических нагрузках в мышцах и других тканях активируется адаптивный синтез белка, увеличивается содержание структурных и сократительных белков, а также миоглобина и многих ферментом. Это приводит к увеличению мышечной массы, поперечного сечения мышечных волокон, что рассматривается как гипертрофия мышц. Увеличение количества ферментов создает благоприятные условия для расширения энергетического потенциала в работающих мышцах, что, в свою очередь, усиливает биосинтез мышечных белков после физических нагрузок и улучшает двигательные способности человека.

Нагрузки скоростного и силового характера усиливают в большей степени синтез миофибриллярных белков в мышцах, а нагрузки на выносливость -- митохондриальных ферментов, обеспечивающих процессы аэробного синтеза АТФ. Тип физической нагрузки (плавание, бег) также во многом определяет величину изменений белкового синтеза.

Под влиянием тренировки в скелетных мышцах происходит адаптивная активация всех основных звеньев синтеза белка, приводящая к общему увеличению клеточного белоксинтезирующего потенциала. В индукции адаптивного синтеза белка при тренировке важная роль принадлежит гормонам: глюкокортикоидам, адреналину, соматотропину, тироксину, инсулину. Они участвуют в обеспечении перехода срочных адаптивных реакций в долговременную адаптацию.

Начало биохимической адаптации связано с повышенном активности ряда ферментов и увеличением количества энергетических субстратов. Усиление энергетического обмена ведет к образованию метаболитов - индукторов белкового синтеза на генетическом уровне. Индукторами могут служить АДФ, АМФ, креатин, некоторые аминокислот, циклический АМФ и др. Повышение активности генома вызывает усиление процессов трансляции либо синтеза структурных сократительных или ферментативных белков, что, в свою очередь, обеспечивает высокую функциональную активность мышц тренированного организма при выполнении мышечной работы.

Существенный вклад в энергетику мышечной деятельности, особенно длительной, вносят аминокислоты - продукты распада эндогенных белков. Их количество в тканях во время выполнения длительной физической работы может увеличиваться в 20-25 раз. Эти аминокислоты окисляются и восполняют АТФ либо вовлекаются в процесс новообразования глюкозы и способствуют поддержанию ее уровня в крови, а также уровня гликогена в печени и скелетных мышцах

Процессы распада белков и окисления аминокислот сопровождаются усиленным образованием аммиака (NH3) при мышечной деятельности, который связывается в печени в цикле синтеза мочевины и выводится из организма. Поэтому физические нагрузки вызывают увеличение содержания мочевины в крови, а нормализация ее уровня в период отдыха свидетельствует о восстановлении процессов распада и синтеза белков в тканях.

Систематические занятия физическими упражнениями оказывают выраженное специфическое влияние на метаболизм белков в организме. Физическая тренировка, направленная на развитие силы, способствует увеличению мышечной массы и повышению содержания в мышцах актина и миозина. В то же время тренировочные занятия, направленные на развитие выносливости, мало влияют на мышечную массу, однако повышают содержание в мышечной ткани митохондриальных белков, особенно тех, которые связаны с окислительным метаболизмом. Эти изменения носят избирательный характер и зависят от направленности тренировочных воздействий.

Физические нагрузки способны также оказывать острые воздействия увеличение мышечной массы и повышению содержания в мышцах актина и миозина. В то же время тренировочные занятия, направленные на развитие выносливости, мало влияют на мышечную массу, однако повышают содержание в мышечной ткани митохондриальных белков, особенно тех, которые связаны с окислительным метаболизмом. Эти изменения носят избирательный характер и зависят от направленности тренировочных воздействий.

Физические нагрузки способны также оказывать острые воздействия на белковый метаболизм. Проявляющиеся в ответ на напряженную мышечную деятельность реакции во многом могут быть сходны с реакциями, характерными для острой фазы при инфекции или ранении.

Мышцы обладают ограниченной способностью к окислению аминокислот. Так, скелетные мышцы млекопитающих могут окислять только шесть из них -- аланин, аспартат, глутамат, лейцин, изолейцин и валин (три последние относятся к аминокислотам с разветвленной цепью), и их окисление мышцами приводит к возникновению проблемы устранения аминогрупп, часть которых в реакции трансаминирования переносится к пирувату с образованием аланина. Последний поступает в печень и затем включается в цикл мочевины (рис. 1).

В неактивных мышцах вклад окисления аминокислот в ресинтез АТФ составляет не более 10 % общего количества используемых энергетических источников, однако при физических нагрузках величина этого вклада снижается. В условиях же ограничения поступления других видов «топлива» окисление аминокислот для энергообеспечения снова приобретает более весомое значение. При этом скорость окисления отдельных аминокислот возрастает неодинаково (например, скорость окисления лейцина может повыситься в пять раз). Тем не менее степень увеличения скорости окисления лейцина требует уточнения, поскольку использование изотопной техники в данном случае не позволяет получить достаточно надежные данные.

Рисунок 1. Окисление аминокислот с разветвленной цепью как важный энергетический источник для сокращающихся мышц (аминогруппы от этих аминокислот транспортируются в печень для включения в цикл мочевины)

строение функция значение белок

При пролонгированных физических нагрузках умеренной интенсивности вклад белкового метаболизма в энергопродукцию составляет, очевидно, не более 6 % общей потребности в энергии. Однако в пище жителей западных регионов планеты в среднем около 12-15 % потребляемой энергии приходится на долю белков. Этот факт позволяет пред положить, что систематическая мышечная деятельность в меньшей стоящи повышает потребность в поступлении в организм белков по сравнению с потребностью поступления углеводов и жиров. При очень напряженных физических занятиях, когда для прироста мышечной массы спортсмены, занимающиеся бодибилдингом, используют большое количество протеиновых добавок, все же отсутствуют доказательства, что такое питание может стимулировать усвоение чрезмерно потребляемого белка тканями организма. Однако подобного рода добавки по-прежнему остаются популярными и применяются на фоне повышенного потребления других субстанций (включая инсулин и такие Ь-агонисты, как клен-бутерол), которые способствуют поступлению аминокислот в мышцы и образованию из них белков.

2.2 Нарушение аминокислотного обмена

Наиболее часто встречающимися болезнями, связанными с нарушением аминокислотного обмена, являются фенилкетонурия и альбинизм.

В норме аминокислота фенилаланин (ФА) с помощью фермента фенилаланингидроксилазы превращается в аминокислоту тирозин, которая в свою очередь под действием фермента тирозиназы может превращаться в пигмент меланин. При нарушении активности этих ферментов развиваются наследственные заболевания человека фенилкетонурия и альбинизм.

Фенилкетонурия (ФКУ) встречается в различных популяциях людей с частотой 1:6000--1:10 000. Она наследуется по аутосомно-рецессивному типу; больные - рецессивные гомозиготы (аа). Мутантный ген, который отвечает за синтез фермента фенилаланингидроксилазы, картирован (12q22-q24), идентифицирован и секвенирован (определена последовательность нуклеотидов).

Фенилаланин принадлежит к числу незаменимых аминокислот. Только часть ФА используется для синтеза белков; основное количество этой аминокислоты окисляется до тирозина. Если фермент фенилаланингидроксилаза не активен, то ФА не превращается в тирозин, а накапливается в сыворотке крови в больших количествах в виде фенилпировиноградной кислоты (ФПВК), которая выделяется с мочой и потом, вследствие чего от больных исходит «мышиный» запах. Высокая концентрация ФПВК приводит к нарушению формирования миелиновой оболочки вокруг аксонов в ЦНС.

Дети с фенилкетонурией рождаются здоровыми, но в первые же недели жизни у них развиваются клинические проявления заболевания. ФПВК является нейротропным ядом, в результате чего повышаются возбудимость, тонус мышц, развиваются гиперрефлексия, тремор, судорожные эпилептиформные припадки. Позже присоединяются нарушения высшей нервной деятельности, умственная отсталость, микроцефалия. У больных наблюдается слабая пигментация из-за нарушения синтеза меланина.

Альбинизм встречается в разных популяциях с разной частотой - от 1:5000 до 1:25 000. Наиболее распространенная его форма - глазо-кожный тирозиназонегативный альбинизм -наследуется по аутосомно-рецессивному типу. Основными клиническими проявлениями альбинизма в любом возрасте являются отсутствие меланина в клетках кожи (молочно-белый ее цвет), очень светлые волосы, светло-серая или светло-голубая радужная оболочка глаз, красный зрачок, повышенная чувствительность к УФ-облучению (вызывает воспалительные заболевания кожи). У больных на коже отсутствуют какие-либо пигментные пятна, снижена острота зрения. Диагностика заболевания не представляет затруднений.

Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний - недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

· фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;

Фенилкетонуримя (фенилпировиноградная олигофрения) - наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина; сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся в виде нарушения умственного развития. В большинстве случаев (классическая форма) заболевание связано с резким снижением или полным отсутствием активности печёночного фермента фенилаланин-4-гидроксилазы, который в норме катализирует превращение фенилаланина в тирозин.

Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных - фенилпировиноградной и фенилмолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме - фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Это ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии.

· алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;

· глазо-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

Алкаптомнуримя - рецессивно наследуемое заболевание обусловленное выпадением функций оксидазы гомогентезиновой кислоты.

При алкаптонурии отмечается охроноз - потемнение хрящевых тканей и быстрое потемнение мочи при её подщелачивании вследствие окисления гомогентезиновой кислоты с образованием тёмноокрашенных пигментов.

В нормальных условиях гомогентезиновая кислота - промежуточный продукт распада тирозина и фенилаланина - переводится малеилацетоуксусную кислоту, из которой в конечном счёте образуются фумаровая и ацетоуксксная кислоты, вступающие в другие биохимические циклы. Из-за дефекта фермента этот процесс тормозится, и остающаяся в избытке гомогентезиновая кислота превращается полифенолоксидазой в хиноновые полифенолы (алкаптон), которые и выводятся почками. Не полностью экскретируемый мочой алкаптон откладывается в хрящевой и другой соединительной ткани, обусловливая их потемнение и повышенную хрупкость. Чаще всего вперёд появляется пигментация склер и ушных хрящей.

Радикального лечения нет, используется симптоматическая терапия и большие дозы аскорбиновой кислоты.

· гомоцистинурия. Этиология и патогенез. Наследственная энзимопатия.

В основе заболевания лежит недостаточность фермента цистатионинсинтетазы, вследствие чего в крови накапливаются метионин и гомоцистин, оказывающие токсическое действие на организм ребенка. Различают две формы гомоцистину-рии: пиридоксинзависимую и пиридоксинрезистент-ную. На 2-м году жизни симптомы заболевания могут отсутствовать. Затем появляется некоторое отставание в физическом и умственном развитии. Отмечаются костные деформации, подвывих хрусталика, неврологические симптомы, дефицит массы тела. В моче повышено содержание гомо-цистина. В крови -- высокий уровень гомоцистина и метионина.

Размещено на Allbest.ru

Подобные документы

    Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация , добавлен 28.11.2013

    Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.

    курсовая работа , добавлен 02.02.2014

    Белки как класс биологических полимеров, присутствующих в каждом живом организме, оценка их роли и значения в процессе жизнедеятельности. Строение и основные элементы белков, их разновидности и функциональные особенности. Нарушение белкового обмена.

    презентация , добавлен 11.03.2013

    Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.

    контрольная работа , добавлен 10.06.2015

    Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация , добавлен 12.01.2014

    Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация , добавлен 07.04.2014

    Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат , добавлен 15.05.2007

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа , добавлен 12.11.2014

    Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.